
General

Reuse existing functionality

Functions are control structures that allow to avoid unnecessary code duplication. Code duplication is the
phenomenon where multiple copies of the same or highly similar code occur in the source code of a program.
It is always a good idea to avoid code duplication.

Also take into account the possibility to call other functions while implementing a function. Sometimes it
will be explicitly stated in the description of an assignment that you have to reuse an existing function (one
that you implemented earlier) in the implementation of a new function. But in other cases such an statement
will not be made explicit in de description of the assignment, while it implicitly remains a goal to detect
possible code reuse while implementing the functions.

Say for example that you were asked to implement two functions: maxsum and mindiff. The first function
maxsum takes three arguments, and needs to return a Boolean value that expresses whether or not the sum
of the first two arguments is less than the value of the third argument. The second function mindiff takes
three arguments, and needs to return a Boolean value that expresses whether or not the absolute value of the
difference of the first two arguments is larger than the value of the third argument. Both functions can be
implemented as follows.

def maxsum(x, y, a):
return x + y < a

def mindiff(x, y, b):
return abs(x - y) > b

Now, say that you are also asked to implement a third function minmax that takes four arguments, and needs
to return a Boolean$ value that expresses whether or not the sum of the first two arguments is less than the
value of the third argument AND the absolute value of the difference of the first two arguments is larger than
the value of the fourth argument. You could implement this function in the following way.

def minmax(x, y, a, b):
return x + y < a and abs(x - y) > b

However, this implementation completely reinvents the wheel since the condition that needs to be check in
this function is nothing but the composition of the two conditions that need to be checked in the functions
maxsum and mindiff. As a result, it is a far better solution to implement the function minmax in the following
way.

def minmax(x, y, a, b):
return maxsum(x, y, a) and mindiff(x, y, b)

In case there is a need to make a modification to your implementation of the function maxsom (because
you have found out there is a more efficient strategy for the implementation, or the initial implementation
contained a bug), you only have to make the adjustments at a single location in your source code, and not in
two locations if you had copied the source code for the implementation of the function minmax.

How does Pythia check floating point numbers

If you have to output a floating point number for a given assignment, without an explicit indication about
the exact number of decimal digits that has to be displayed on the output (without rounding or truncating),
Pythia will check by default that the number is accurate up to six decimal digits. As a result, it does not
really matter how many digits are shown on the output.

1



Functions/methods: return vs print

In assignments where you are asked to implement functions or methods, you should read carefully if the
function either needs to return a result, or if the function needs to print a result. A return statement must
be used to let the function return a result. The built-in function print must be used to let the function print
a result to standard output (short: stdout).

In the assignment C-sum (series 05) you are asked, for example, to write a function csum that must return a
result. One possible correct implementation of this function is

def csum(number):
return number % 9

where a return statement is used to have the function return a computed value. Suppose that we erroneously
used the built-in function print to write the computed value to stdout, and submitted the following incorrect
solution for this assignment.

def csum(number):
print(number % 9)

In this case, the Pythia platform would evaluate the submission as a wrong answer, where the following
feedback would be given on the feedback page.

Figure 1: return vs print

The feedback contains two remarks. The first remark indicates that the function was expected to return an
integer value (8), but instead the function did not return any value (or more precisely, the function returned
the value None). This is the meaning of the error message

Error: expected return type int but nothing was returned

In addition, a second remark indicates that the function has written some information to stdout, whereas no
information was expected on this output channel. This is the meaning of the error message

Error: unexpected output was generated on stdout

If you would have used a return statement instead of the built-in function print, both error message would
have disappeared and the Pythia platform would have evaluated the submission as a correct answer. Also
note that results returned by a function/method are marked with a thick yellow line in the feedback table,
whereas results that are printed by a function/method are marked with a thick black line.

2

http://www.spoj.com/COMBIO15/problems/PROG0024/


Rövarspråket

Specific information

The solution to this assignment comes with realizing that processing a group of successive consonants needs
to be postponed until a character is encountered that is not a consonants (which completes the group of
successive consonants). This is illustrates by means of the following example, which translates the string
abcdefg into Rövarspråket.

Figure 2: Rövarspråket

The idea is to traverse the string that needs to be encoded character per character. When a consonant
is encountered, it is not immediately appended to the encoded string, but instead it is appended to the
current group of consecutive consonants. When a non-consonant is encountered, it closes the current group of
consecutive consonants. In case such a group has been formed, it is appended to the encoded string, followed
by the letter o and another repetition of the group of consecutive consonants. Only after this has been done,
the non-consonant is appended to the encoded string, and a new group of consonants is started.

After all character of the string that needs to be encoded have been processes, there might still be a group of
consecutive consonants that has not been processed. This is the case if the string ends in a consonant. In
the example given above, this is the case for the group fg. If you end up in this situation, you still need
to append the current group of consecutive consonants to the encoded string, followed by the letter o and
another repetition of the group of consecutive consonants.

Pangrammatic window

Specific information

The easiest strategy to implement the function window is to iterate over all possible substrings of the given
text. For each of these substrings you then determine whether or not it is a pangram, and you remember
which one of the pangram is the shortest one.7

To iterate over all substrings of a given string, you can iterate over all possible start positions of substrings,
and the iterate over all possible stop position for each possible start position. This can be implemented using
a double for-loop. The following code snippet, for example, outputs all substrings of the string 'abc', where
we only take into account substrings having at least length 1.

>>> s = 'abc'
>>> for start in range(len(s) - 1):
... for stop in range(start, len(s)):

3



... print(s[start:stop + 1])

...

a
ab
abc
b
bc

If you think twice, there’s even no need to iterate over all possible substrings to find the shortest pangram. If
you want to avoid spurious computations, you can give it a thought how you can avoid that Python should
do unnecessary work.

Recombination

General information

Iterate both positions and values of sequence types

The built-in function enumerate can be used to request an iterator for a given sequence type (strings, lists,
tuples, files, . . . ) that both returns the position and the value at that position for the next element of the
sequence type. The example below illustrates for example how this can be used to iterate simultaneous the
positions and the characters on those position of a string.

>>> for index, character in enumerate('abc'):
... print("index: {}".format(index))
... print("character: {}".format(character))
...
index: 0
character: a
index: 1
character: b
index: 2
character: c

You can also use this to simultaneously iterate over the characters of two strings.

>>> first = 'abc'
>>> second = 'def'
>>> for index, character in enumerate(first):
... print("{}-{}".format(character, second[index]))
...
a-d
b-e
c-f

However, in this case it is better to use the built-in function zip, which is especially equipped to iterate over
multiple iterable objects at once.

4



>>> first = 'abc'
>>> second = 'def'
>>> for character1, character2 in zip(first, second):
... print("{}-{}".format(character1, character2))
...
a-d
b-e
c-f

Split strings into multiple parts

Sometimes you need to split a string into multiple parts. One way to do this job makes use of the string
method split. This method takes an optional string argument, that indicates the sequence of characters
(called the separator) that needs to be used to split the string on which the method is called.

>>> string = 'a-b-c-d'
>>> string.split('-')
['a', 'b', 'c', 'd']

By default, the method splits the string at all positions where the separator occurs in the string, and places
each of the parts in a list that is returned by the method. In case no argument is passed to the method, the
string is split at each occurrence of a sequence of whitespace characters (spaces, tabs, newlines, . . . ). The
string method also has another optional argument that you can use to indicate the maximal number of parts
in which the string needs to be split.

Because the string method split returns a list, you can directly iterate over the elements of the list using a
for-loop.

>>> string = 'a-b-c-d'
>>> for element in string.split('-'):
... print(element)
...
a
b
c
d

Remarks

Because strings are immutable you cannot directly change a string. If you want to obtain a modified string,
you’ll always have to create a new string.

Say, for example, that we want to modify the string 'azyc' by replacing the substring 'zy' with the string
'bc', without making use of the string method replace. This can be done in the following way.

>>> string = 'azyd'
>>> substring = 'bc'
>>> # this the wrong way to modify the string
>>> string[1:2] = substring
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError : 'str' object does not support item assignment
>>> # this is the correct way to modify the string

5



>>> string = string[:1] + substring + string[3:]
>>> string
'abcd'

Sometimes it is needed to explicitly check if certain conditions hold when executing part of your source code,
and the program needs to respond if one of the conditions is not met. One of the easiest ways this can be
done in Python is by using the assert statement.

>>> x = 2
>>> y = 2
>>> assert x == y, 'the values are different'
>>> x = 1
>>> assert x == y, 'the values are different'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AssertionError : the values are different

The general syntax of the assert statement is

assert <condition>, <message>

The assert statement checks whether or not the condition is met. If this is not the case, an AssertionError
will be raised with the message that is given at the end of the assert statement. In case this exception is
not caught elsewhere in the code (which will always be the case in this course), the execution of the codes
halts at the point where the AssertionError was raised (runtime error).

6


	General
	Reuse existing functionality
	How does Pythia check floating point numbers
	Functions/methods: return vs print


	Rövarspråket
	Specific information

	Pangrammatic window
	Specific information

	Recombination
	General information
	Iterate both positions and values of sequence types
	Split strings into multiple parts
	Remarks



