Ghent University
Faculty of Sciences

Python
Programming

the art of problem solving

Prof. Dr. Peter Dawyndt

peter.dawyndt@ugent.be
@dawyndt

(Come closer . .
g g

000-005
Unexplained
Phenomena, Soft-

ware Programming

Programming experience %>

What programming language do you master best? W

Scratch ’
Java ‘
Python
HTML/CSS/JavaScript
:7:\‘» none (never programmed before) -
N Bsocrative i
. UNIVERSITEIT socrative.com)

h room: 407122 i

http://www.socrative.com/

teach yo%sth\ink like a computer scientist

this way of thinking combines best features of

* mathematics

» use formal languages to denote ideas (computations)

* engineering
» design things
» assemble components into systems

» evaluate tradeoffs among alternatives

 natural science

» observe behaviour of complex systems

» form hypotheses
teachyyQu tedhink like a computer scientist

problem solving is the single most
important skill for a computer scientist

* formulate problems
* think creatively about solutions

e express a solution clearly and accurately

learning to program is all about
learning to solve problems

?‘W) learning by doing
4, UNIVERSITEIT

l GE'I_\I'Ti

CNRIR
B

(RO TR
IS INE |

problem
solving

programming
language

.

i

ETHD
300¢ 95JN02

CTHD
300¢ 95JN02

TTHD
}00g 9s4n02

YTHO
300¢ 95JN02

SHO
%00q 954N02

OTHD
300g 3s4n02

6HD
300¢ 95JN02

6HO
%00¢q 954N02

LHD
300g 3s4n02

8HD
300g 3s4n02

LHD
300g 3s4n02

LHD
300¢ 95JN02

9HD
300¢ 95JN02

YHO
300¢ 95JN02

€HD
}00g 9s4n02

CHD
300g 3s4n0d

THO
300g 3s4n02

OHD
}00¢q 954N02

|ela91ew Suipeau

I

Suiwwea3doud
paiualJio 323[qo

Suiwwea3doud
paiualio 323[qo

Suiwwea3doud
paiualio 323[qo

S9|14 121

S314BUOI3IIP
pue s1as

sa|npow pue
suolsuayaJdwod 3si|

suonouny
pasueape

s9|dn} pue sis||

s9|dn3 pue sisi|

suonouny}

s3ulais

J9y12301
[le 3 Sund

sdoo|

S|euonIpuod

Sjuswalels
pue suoissaldxa

s9|dipund
Suiwwesdoud diseq

$94n303)

U LALANS SN S S

uonen|eas

Suiwwea3doud
paiualio 33[qo

3|14 1%}

S91JBUOIIP
pue s1as

sa|npow pue
suoJ3oUN} pdUBApPE

sa|dn3 pue sisi|

uollen|eAa

sa|dn3 pue sis|
solouny

suoiouny

s8ulias

S|eUoI}IpuUod

Sljuswialels
pue suoIssa4dxa

uoISsas uo-spuey

CNRIR
B

(RO TR
IS INE |

problem
solving

programming
language

.

i

Design cycle 5>

\A) describe and analyze the problem w

what should the program do ?

what is the input, and what is the expected output ?

@ design an algorithm (pseudocode)

L how to achieve the result ?

@ convert algorithm into source code

following syntax rules of chosen programming language
'T @ compile source code into machine language

!}, @ execute the program B
4 JII} @ trace potentional errors (debugging) gBSOCIaUV@!
TEl

UNIVERSI socrative.com

1
GENT
h room: 407122 i

http://www.socrative.com/

2!!1 ,l

CNAIN
, L

G ll ‘llllll |

\"

MMM MMM

MMMHMEM
.........

Taigg

’,Li]1(.;.510’017;-“” {2170 ef e rxtort 11r0 aucy; defon
for1 ducamed digriaf que ydehnai o1 reddasic ¢ o
ulaplicent L.rm\‘rn.aw[\‘-m“”,‘{ ST 110

1L 0 uctna

(1100 7 ;2
rcutfatizc rcchrnmmi JucIT 1

77 Srrve
71 xxu7lu~r.zrrul'ttqf ata nolurncue bl g

: n‘ﬂn‘uttuulm‘p« rieredc u.zn't 10TC D¢ Mt io idozy
r~-m,nf;ar“m”,{»,1,2111’“;’,{”,1'”’a}’mh SO rrriseset iu e 177, u.:,'k)
T 1. 1010801 Cazts 22 ':I‘nur iy 00&“71' boass qn’ﬂu o |
(“Ja‘c . ‘ o 7 gt gevgeiila gu] 11100 .-Hrn— rrufcap
ttfiorie wllectoe o 9+ ac srffper-fiotie:
. criefle 4

Jrve . AUpvtizing. Cuen 1u101(ioy 5 sof offs
ter-fo 1
’ uo,mJu Jzﬁ:n{yml}(‘ fud. u.'iﬂ r’t‘t'[x! cop . P
Cuf{uohueru

Z D¢ opere ¢ fizpeal.

Itu »
2% Ilmc teolzicreir zmrrur © €O tr1tref.
Vet v'qud oo c1y ol

»
\" 7. TS 1710 _“’Ik‘y(‘_ ~g | u (II) 2 e proeow
o ‘ﬂmm« i ulla du b

Yz
m"phq W erpoliss gaoem 5
taeralyyolerriaby,

Wnmenuy Josidy; parelo ,[;,
rv unrlu‘

vt;rzr dn’m‘lfrr'blru

Criiras

1 11t I-oxdmﬁmn tf carii. fie agere

whmyﬁnr [cpmncy rocktie Ser r‘fT
‘l nau‘ 2. I“ l] ey
‘!“ - uqrunrﬂmun:zbc' frir ‘u:* T (4‘
: r' fea°TH !'

% 3m {{‘*Jnth ml(l'nm' rets "avalt u’(! L‘

itncabal
nitf g, mnun-ﬁﬁm({(td"r

l.
ir:Trreraaf srraanee
Loz pawface

tig. @ eocleurnf dcerrer b7 fr 01
=lectf R canfs Ul

:"5'11("41(4,“ ’

npofe. l«f'um

"l‘mo
1147, ﬁ'm TN
, €10 12050 hoe
d}r,lot'-umu.r';n'
Um '
| 4't 2 uflxruunlu«’ff
ANt for W {uen:
Rt Alro Thite, g’d:q .

o udn‘((;}wﬁtw" s s
W ann,

7“’% < hoe

1983 in the Soviet Union, commemorating Muhammad ibn Musa al-
PICTURE WIKIMEDIA

A stamp issued September

6, i
Khwarizmi's (approximate) 1200th birthday. Persian mathematician, astronomer and geographer.
The word algorithm refers to Algoritmi, the Latin translation of his name.

X
X
X
X
X
X
X
X

% UNIVERSITEIT

I GENTi

=>‘|
— >y
—
—
=>~1
_>1
——pg
—

Computer programming

The purpose of programming is to create a set of
instructions in a programming language that
computers use to automatically perform specific
operations or to exhibit desired behaviors.

https://en.wikipedia.org/wiki/Computer_programming

A programming language can be used to create programs that control
the behavior of a machine or to express algorithms precisely.
Programming languages differ in syntax and grammar from natural
languages, as languages that are used for interaction between people
are too complex and full of ambiguities. Text written in a programming
language (source code) should allow humans to communicate
instructions that machines only can interpret in a unique way.

define harmonic function
from numpy import pi, sin, cos, mgrid
dphi, dtheta = pi/250.0, pi/250.0
[phi, theta] = mgrid[0:pi+dphi*1.5:dphi,0:2*pi+~
mo =4; ml = 3; m2 = 2; m3 = 3; m4d = 6; mb =
r = sin(mO*phi) **ml + cos (m2*phi)**m3 + sin(
cos (m6*theta) **m7 ’
r*sin (phi) *cos (theta)
r*cos (phi)
= r*sin(phi) *sin (theta)

plot harmonic function

from mayavi import mlab

s = mlab.mesh(x, y, z)
mlab.show()

https://en.wikipedia.org/wiki/Programming_language

=3 “§ Open Personal noavi;m
N and Multimedis
HE SCHEME PROGRAMMING LANGUAGE Ansiscupmg Moo

Systems Programming with Modula-3 |

Learning Python ...

5 e The m-calculus
/,@&&V A Theory of Mobile Processes
- AN

/yw

& Orwant

Programming Perl .=

. - ™ The Craft of k
W Miranda gegicnat, | o
ELEMENTS OF ML PROGRAMMING w77 eomon 85

The Little MLer Felleisen and Friedman

The Java" Programming Language

{ -
, " Wil Z
Second Edition W)=

?Je

e — - e — e et —

S

Programming languages

THE C++ PROGRAMMING LANGUAGE

_.
"

wih VI

THE € PROGRAMMING | ANGUAGE s

Software Construction D n«m ¥ O <
wnd Natn Cornvtuivac with W R y &

"b’
1
;

Idman |

Programming languages

* two types of programming languages

» high-level languages
= Python, Java, C/C++, Perl, Ruby

» low-level languages
= assembly or machine languages

= hardware-specific
o Intel x86 (Pentium) — IBM PC compatibles
o Motorola/IBM PowerPC — Apple Macintosh; IBM servers

o Sun SPARC - Sun servers

* computers only execute low-level languages

» programs written in high-level languages are translated
to the machine language of a specific computer system

Programming languages

* advantage of low-level programming language

» program can be tuned to specific computer system
= maximum execution speed

"= minimum memory consumption

* advantage of high-level programming languages

» easier to program
= |ess time to write
= shorter and easier to read

= more likely to be correct (fewer bugs)

» much easier to port, or modify to run on different computers

today almost all programs are written
in high-level programming languages

it

et

Translate source code @“
fs:‘} \ ’l,
i scenario 1: compiled languages (C, C++) ‘

source code translated to machine language by compiler
stored as an executable file (object code)

program loaded from memory and executed

| source object
compiler
&Jt code code
A5 l

4 T J I pr.ogram orogram program
EJWERSHEH ~ input output ;.

Translate source code

b scenario 2: interpreted languages (Perl, Bash)

source code translated to machine language by interpreter

interpreter immediately executes object code

this happens line by line

source
' code
b
Wy
& i program

I

"W UNIVERSITEIT input

)

IGENT

interpreter

—»

J

program
output

|

)

B A F ., -

l,ﬂl‘ ,

e
p

ki

@ \

Translate source code

scenario 3: hybrid approach (Python, Java)
source code translated to byte code by compiler
stored as an "intermediate" file

interpreted by separate program on execution
Python runtime, Java Virtual Machine (JVM)

e compiler - byte code
code P y

N
'
—

4m

IGENT

program V|rtual
 UNIVERSITEIT | input - machine

Python runtime \@3‘“

may be executed in two different ways ‘

interactive session (shell mode)

enter a Python instruction

interpreter immediately executes instruction and returns result |

¥
€N $ python3

b Python 3.2.3 (default, Apr 11 2012, 07:15:24) *

W _ | 4

4|||||1| Type "help" for more information. ‘(’
JONIVERSITEIT | >~ Print(lo+ 1) .
" GENT 2

. 7

leeg.doc
leeg.doc

Ly o
|] /Q“
: e
\Y
- Python runtime 2
i | | 1’1
M may be executed in two different ways |
interactive session (shell mode)
enter a Python instruction
interpreter immediately executes instruction and returns result |
non-interactive session (script mode)
store Python instructions into a text file
tell the interpreter to execute is
L
$ cat firstprogram.py ‘
'}, } print (1 + 1) ’
nﬁ $ python3 firstprogram.py &
CUNIVERSITEIT | 2
GENT
b 4

leeg.doc
leeg.doc
leeg.doc

o34 P !
F; What is a program? @3‘@“

!
S

:]
:yk d sequence of instructions that SpECIerS how to L‘
perform a computation
examples
mathematical
solving a system of equations
finding the roots of a polynomial
5‘:‘ symbolic computation
';w searching and replacing text in a document J
;'IHIT]T interpreting a program (like the Python interpreter) V(i

"W UNIVERSITEIT

l

IGENT

g

What is an instruction? P

M different programming languages |
— different instructions (commands, statements)

common basic instructions

read input
get data from the keyboard, a file, or some other device
produce output

display data on the screen or send data to a file or other device

)

, math

¥

(N perform basic mathematical operations like addition and multiplication ‘
"f ! conditional execution |
P ~
% 1 check certain conditions and execute appropriate sequence of statements ‘
WUNIVERSITEIT repitition i)

GENT
. perform some action repeatedly, usually with some variation i

What is programming?

All programs consist of instructions like these. So one way
to describe programming is the process of breaking a
large, complex task up into smaller and smaller subtasks
until eventually the subtasks are simple enough to be
performed with one of these simple instructions.

o J da

1« What is debugging? g\g*""‘@

Oove hedl AR somm Al ain 4 /-2 Fvo 7-032 gy 015
/000 . < - oufom / i 7087 §¥YC 95 <couh
13", 203:) MP - M W/:—E@‘Q 7615725055 (-0
033 PrO »+ 2. 130yr6Y5

Cons b 2.13067¢% g
(R G2 i3 ./a.LJ x,r;vJ ‘T“'J Jeo b | >
{m - o, ow M '

e/l\”
-1 . ‘/J.(Slhe d\cck)
IS 23 ._‘Ir:.-, :o;-) ll u..I‘\ c{j'f‘r TE\, R

@ekow\ 70 ?qr\c‘ 2

\Mo’ﬁs in (2 \QU\

ey a‘l-\r Qs‘ﬁ:;" case o~f bucl b m1 {u A
(P M

EEEEEEEEEEEEEEEEEREEE
- -,

Attribute
Error

You are calling a
method on the wrong
type of object

-

palelh b

“ssssssssssmsssssnnsnnnn?
JATEEEIEEEEIEEEEEIEEEEEE,

SyntaxError

You've forgotten the
quotes around a string

-
-
=
[

You have forgotten to
put a colon at the end
of a def/if/for line

You have different
number of open and
close brackets in a
statement

e *
SEEEsEEEEEEEEEEEEEEEEEE

M e T e

N EITEEEEENEEEEEEEEW
- .

TypeError

You're trying to use an
operator on the wrong
type of objects

An object which you
expect to have a value is
actually None

You've used non-integer
numbers in a list slice

You've called a method/
function with the wrong
number or type of
arguments

AN EEsE s NN ESEEEEEEEEEERER R,

. -
AN NS ESEEEEEEEEE SR

ST RN RN TN T R Ry,

Indentation
Error

You've used a mixture
of tabs and spaces
You haven't indented all
lines in a block equally

NI NN NN R RN,

*
YsapmsmEEEEEEEEEEES

Yasssssssssssssaansnannnt

-
Ll
-
=
=
=
=
=
-
=
-
=
=
=
=
"

»

¥
1
1
1
1
1
]
1
1
]
]
LY

e EEEEE - ———

What type
of error do

‘--——-—-——"

1
L)

eSS EsEEEE SRRy,

NameError

You've misspelt a variable, =
function or method name =

r

You've forgotten to
import a module

You've forgotten to
define a variable

Your code uses a
variable outside the
scope where it's defined

Your code calls a function
before it's defined

You're trying to print a
single word and have
forgotten the quotes

-

*
“spmEEEEEEEEEEEEEEEEEEER?

PRI T T TP T T T T T er

IOError

You're trying to open a
file that doesn't exist

-

N

sunulannnny
‘asansnmnnat

3
“assmmssmEmmsnsmnnnnnnnat

A S NS S NSNS S EEEE RNy
-

KeyError

You're trying to look
up a key that doesn't
exist in a dict

+
“ssssssssssnsmsmssnnmnnnt

-

http:/pythonforbiologists.com

*ssmsmssmunt®

Do you get an
error when you
run the code?

Does the code
use loops or if

My code isn't working :-(

G I NN NN NN NN NN NN NN SN NN E NN EEEEEEEE,

A variable that should I'm trying to print a value
contain a value does not but getting a weird-
You are storing the return looking string
value of a function which You are printing an object
changes the variable (e.g. a FileObject) when
itself (e.g. sort) you want the result of
calling a method on the

object
A regular expression is

A number which should
be a fraction is coming
out as zero in Python 2

You are dividing integers not matching when I

rather than floats. expect it to

Convert the numbers to You have forgotten to use

floats or from __future__ raw strings or escape

import division backslash characters

I am reading a file but getting no input
You have already read the contents of the file earlier
in the code, so the cursor is at the end

P LR T
*
A NN RN EEE NS EEE NN EEE NN NN NN EEEEEEEEEEERS

-
e ———————r

statements?

PR R R R R R R N

Two numbers which should
be equal are not
You are comparing a number
with a string representation
of a number (e.g. if 3 =="3")

A complex condition is not
giving the expected result
The order of precedence in the
condition is ambiguous - add
some parentheses

e'TEEEEENEEEEEEEEEEEEEEEEEEEEN,

“sssssssssssssssssssssmssnssnmasn®

T NN NN NN NI NN NN NI NN NN NN ENNEEEE NN RN NN
-

-

= A list which should have 1am trying to loop over a
i a value for every iteration collection of strings, but
only has a single value am getting individual

You have defined the list characters
inside the loop: move it You are iterating over a
outside string by mistake

A loop which uses the
range function misses
out the last value
The range function is
exclusive at the finish:
increase it by one.

I am trying to write
multiple lines to a file but
only getting a single one
You have opened the file
inside the loop: move it
outside

‘aspssssssssEsEEEEEEEEsEEEEEnnnnnat

S EUE NN NN NN NN NN EEEEEEEEEE
.

_

*
apEEEEEEEEEEEEEEEEEEEEEEEEEES

e

What is debugging?

three kinds of programming errors

* compiler-generated errors (syntax errors)
* errors during code execution (run-time errors)

* logical errors (semantic errors)

What is debugging?

three kinds of programming errors

* compiler-generated errors (syntax error)
» Python cannot execute a program unless it is syntactically correct
» otherwise it returns an error message without starting the program

» syntax refers to program structure and rules about that structure

 example in natural language
» grammar rule: a sentence must begin with a capital letter and end
with a period
= "this sentence contains a syntax error."

® "So does this one"

What is debugging?

three kinds of programming errors

* compiler-generated errors (syntax error)
» Python cannot execute a program unless it is syntactically correct
» otherwise it returns an error message without starting the program

» syntax refers to program structure and rules about that structure
 Python example

» mismatching parenthesis

>>> print())
File "<stdin>", line 1

print(5 / 2))

A

SyntaxError: invalid syntax

What is debugging?

three kinds of programming errors

e errors during code execution (run-time error)

>
>
>
>

do not occur until program is run and faulty line is executed
called exception because something exceptional (<) has happened
exection of program is usually terminated at this point

information about current state of program is printed

 Python example

>

>>>

division by zero

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

What is debugging?

three kinds of programming errors

* |ogical errors (semantic error)

» program runs successfully
= in the sense that it does not generate error messages

» but it does not do what you want it to do
= it returns the wrong result

= jtis doing what you told it to do !!

Debugging logical errors requires you to work
backwards from the observed output (if any) to
determine what the program is actually doing internally.

Experimental debugging

@

o5

Experimental debugging

* one of the most important skills you will acquire
in this class is debugging

» some programmers believe debugging is one of the
most intellectually rich, challenging, and interesting

parts of programming

» some students soon enough associate debugging
with a strong feeling of frustration

* debugging is like detective work
» you are confronted with clues

» you have to infer the processes and events

"When you have eliminated the impossible,
whatever remains, however improbable,
must be the truth"

— Sherlock Holmes
uit The Sign of Four (Arthur Conan Doyle)

Experimental debugging

* debugging is also like an experimental science
» form hypothesis about cause of error
» modify program, and predict new outcome
» if results match prediction, hypothesis is correct

» otherwise, modify hypothesis

Formal and natural languages 4@

M natural languages |
spoken by people (like English, French and Arab)

not designed by people; they evolved naturally

formal languages

designed by humans for specific applications

mathematicians

mathematical notation: denotes relationships between numbers and symbols

¥ chemists
'\ | chemical notation: represents chemical structure of molecules
“f/_\ computer science

s I

Fo W rogramming language: designed to express computations
" UNIVERSITEIT Prog 6 langtiage: cesie P P

)

IGENT

o g
et
E Formal and natural languages &«&

ke .

| |
- natural languages ‘
spoken by people (like English, French and Arab)

not designed by people; they evolved naturally

formal languages

tend to have strict rules about syntax

3+3=6 is a syntactically correct mathematical statement

, 3=+6S$ is not
' : : :
¢, H,0 is syntactically correct chemical name
b -
e ,4Z 1S not J 1
—
% i

"% UNIVERSITEIT

)

IGENT

L T 3
} S
H? Formal languages e

oy - |
1 |
B two types of syntax rules ‘
token rules
tokens are basic elements of the language
words |
numbers I
chemical elements
in 3=+6$, $ is not a legal token in mathematics
in ,Zz, there is no chemical element with abbreviation Zz
" | structure rules
!}” the way tokens are arranged into a statement r |
9% T in 3=+68, plus is not allowed to follow equal signs v
',":WVERSWE'T in ,Zz, subscripts must come after the element name, not before 6.1

IGENT

i Formal languages ¥

g l

K two types of syntax rules ‘
token rules

structure rules

process of determining the structure of a sentence
in a natural or formal language is called parsing

example: "The other shoe fell."

"the other shoe" is the subject
¥y "fell" is the verb

!}, ;A after parsing a sentence you can determine the

\ meaning or semantics of the sentence
W, UNIVERSITEIT

)

IGENT

L&

¥ 4 ‘u
'\‘

P 5
"f/_\
b LI
" UNIVERSITEIT

b

IGENT

g
‘?&“

Formal and natural languages @6’3‘

formal and natural languages share ‘
words
structure
syntax

semantics

difference between formal and natural languages
compares to difference between prose and poetry

~

g

Formal and natural languages &%

-
-

W formal and natural languages differ on ‘
ambiguity

natural languages are full of ambiguity; people use contextual clues and
other information

formal languages are designed to be unambiguous; each statement has
exactly one meaning

redundancy

natural languages are redundant to make up for ambiguity and to reduce
miscommunications

¥\ natural languages are verbose

formal languages are less redundant and more concise

— literalness

“ UNIVERSITEIT natural languages are full of idiom and metaphor: no shoe, no falling

)

IGENT formal languages mean exactly what they say

CNRIR
A -

(UL TR

S 0

1|1|:|||ml .

$ cat HelloWorld.py
print ('Hello, World!')
$ python3 HelloWorld.py
Hello, World !

leeg.doc
leeg.doc
leeg.doc

course book: read chapters © and 1

> in preparation of the next hands-on session
> Punch W & Enbody R (2017, global edition)
The practice of computing using Python. Addison-Wesley
ISBN-13: 978-1-29216-662-9
PDF-version available on Ufora

Sl = second and third edition of the book can still be used

The Practice of Computing as it also covers Python 3
4 Us\ngPyY.hon

¥
' P+ Lrbady

N

%
b

‘ J I

W UNIVI
GENT

.'

- Homework (hands-on sessions) ,.N‘

e video tutorials

> first Python program in PyCharm

> interactive Python sessions in PyCharm
» check practical information

> Ufora
> Dodona

https://ufora.ugent.be/d2l/home/1196609
https://dodona.be/en/courses/5090/
https://www.youtube.com/watch?v=VMSpDok9l4c
https://www.youtube.com/watch?v=rWX3fK16kXk

- Homework (hands-on sessions) %"

* solve mandatory exercises series O1
(deadline Tuesday, September 30, 2025, 22: 0O)

ISBN (demo, video) v iw\eo
Sum of two integers .
Best laid plans v
The pudding guy v
;, : Human Development Index
‘ g The stopped clock

g !
‘ J I

W UNIVI
GENT

https://dodona.be/en/courses/5090/series/58572/activities/910319224/
https://dodona.be/en/courses/5090/series/58572/activities/1555355466/
https://dodona.be/en/courses/5090/series/58572/activities/1135534568/
https://dodona.be/en/courses/5090/series/58572/activities/761303597/
https://dodona.be/en/courses/5090/series/58572/activities/554093539/
https://dodona.be/en/courses/5090/series/58572/activities/1477235114/
https://youtu.be/AU-hPL8NgDo
https://youtu.be/AU-hPL8NgDo

Teaching methods

" independent work

detailed planning in Dodona course

read course book: essential preparation for lectures

additional preparatory tasks: essential preparation for hands-on sessions
mandatory exercises: essential for learning to code

L try to solve as many exercises as possible before the hands-on sessions
ask questions via Dodona, Ufora, or during lectures and hands-on sessions

good preparation is the best way to learn to code

Y

"‘-f\‘ “
(g
% i

% UNIVERSITEIT

I GENT

https://dodona.be/en/courses/5090/

&

Y
L

|

1‘

g
P 5
"f/_\
b LI
" UNIVERSITEIT

b

IGENT

T 3
1:) oo
- Teaching methods o

) A2

)

|

lectures ‘

programming techniques explained through examples
essential preparation: read course book, read in-class assignments

opportunity to think along and ask questions !!! |
arrive in time and turn off your cell phone @

hands-on sessions

work on mandatory programming exercises in PC-room

use course book and Python documentation as reference material
use your own laptop to solve exercises (BYOD)

opportunity to ask questions to peers and teaching assistants

\.

collaboration between students allowed (max 3 students per group)

g, |

~

g

Study material

The Practice of Computing

course book Using Pychon

Punch W & Enbody R (global edition, 2017). 5 It
The practice of computing using Python.
Addison-Wesley, 978-1-29216-662-9.

reference books
Mark Lutz (2009). Learning Python: Powerful Object-Oriented

} L Programming (4th edition). O'Reilly Media, 978-0596158064.
Mark Lutz (2011). Programming Python (4th edition).

\}‘ O'Reilly Media, 978-0596158101.

‘! J I

gUN‘IVERSITEIT

IGEN

Study material

powerpoint slides
shared on Ufora
please report any errors or ambiguities
updated versions of slides may replace older ones

‘., background material
oo ! additional reading material
i shared on Ufora

ot reference material
&8

' help function in interactive session (built-in documentation)
K}*Q‘ The Python Tutorial

‘ I The Python Standard Library

\,UN‘IVERSITEIT

IGENT

https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html

Contact hours

lectures

join one of these two sessions
initial assignment in TimeEdit based on your study program |
feel free to join another sessions (no need to ask permission to switch sessions)
available for all lectures: livestream + recording (see Ufora Calendar)

Dutch track

Monday 11:30 — 12:45 (week 1-4)
Campus Sterre, S9 building, auditorium A2 (second floor)

Y

| }] Thursday 08:30 — 09:45 (week 1-12)

o Campus Sterre, S9 building, auditorium AO (ground floor)
!}f*@ English track
—
S Monday 14:30 — 17:15 (week 1-12)
A\ T
4 UNIVERSITEIT online (MS Teams)

I GENT

https://soleway.ugent.be/?to=40.09.120.021&exact=true
https://soleway.ugent.be/?to=40.09.100.030&exact=true

»

3
N
’
N
9 T

il
"t,,UN'IVERSITEIT

3

I GENT

Contact hours

hands-on sessions

join one of these two sessions
initial assignment in TimeEdit based on your study program
feel free to join another sessions (no need to ask permission to switch sessions) ’

Friday 10:00 — 12:15 (week 1-12) }
Campus Boekentoren, room 0.9 (ground floor + floor -1)

study programs: biochemistry & biotechnology, biology, geography,
pharmaceutical engineering

Friday 14:30 — 17:15 (week 1-12)

Campus Boekentoren, room 0.9 (ground floor + floor -1)

study programs: chemistry, geology, physics & astronomy, statistical data analysi§

https://soleway.ugent.be/?to=05.01.100.037&exact=true
https://soleway.ugent.be/?to=05.01.100.037&exact=true

ﬁ
k)
L

|

1‘

g
P 5
"f/_\
b LI
" UNIVERSITEIT

b

IGENT

Study coaching
i

all "ad valvas" announcements via Ufora
ask questions and make comments

during lectures and hands-on sessions
via Ufora discussions
immediately after lectures

during a personal appointment (arrange via email)
do not send emails from an anonymous email account
always use your Ugent email account
always mention your name, study program and related course
avoid typos, spelling mistakes and texting language ()
use clear language and a correct form of address

\.

~

g

l}ll'.
m

Study coaching: lectures

lecturer

Prof. Dr. Peter Dawyndt
Department of Mathematics, Computer Science and Statistics
office: Campus Sterre, Krijgslaan 281, S9 building
. phone: +32 9 264 47 79 -

)
| email: peter.dawyndt@ugent.be

o
l
l?‘,’* research topics
. pp computational biology (bioinformatics)
N - -
!}w)% computer science education
o
% Timi -
& Sy
l'\UI\fl\}ERSITEIT

lGE’NTa

& e
%, UNIVERSITEIT
GENT

Maarten Stevens

maarten.stevens@ugent.be

Mustapha Regragui

mustapha.regragui@ugent.be

Tibo De Peuter
tibo.depeuter@ugent.be

3

Thomas Van uIIem

thomas.vanmullem@ugent.be

Vincent Batens
vincent.batens@ugent.be

Wouter De Bolle

wouter.debolle@ugent.be

Rien Maertens
rien.maertens@ugent.be

Emma Vandewalle

emmavdwa.vandewalle@ugent.be

¢
%)
1

. i
Evaluations e

mandatory programming exercises }
put theory into practice

weekly deadlines
series 01 — series 05: Tuesday 22:00 :
series 06 — series 10: Tuesday 22:00 |

evaluations
solve two exercises in two hours
follows same procedure as exam

Y lower level of difficulty compared to exam: tests basic skills 4
g . . :
o other programming exercises
‘ LTS non-mandatory

UNIVERSITEIT

learning to code = practice, practice, practice, ...

IGENT

P
- Evaluations %
M \
s
' non-periodic evaluations count for 4/20
triple profit !!!
cannot be taken again for resit exam
evaluation score takes into account mandatory exercises
solved before weekly deadlines
assessment
| solutions for mandatory exercises before weekly deadlines
l‘f '. solutions for two new exercises during evaluation
'-‘.\" | feedback
w-):\ sample solutions shared after weekly deadlines
S i

" UNIVERSITEIT

b

IGENT

score and personal feedback shared shortly after evaluation

\.

~

g

NS or remarks ?

muﬁi ERSITEIT

IGEN i

The sky is the limit

2 / averyou thought thl%gam

" ,“. \M‘&) _,» po

v RV S X -
T io_r']_a.lrgieog ‘Ehuc Magazme
. o S o N TR . ‘

	Dia 1: Python Programming
	Dia 2
	Dia 3
	Dia 4: Programming experience
	Dia 5: Think like a computer scientist
	Dia 6: Think like a computer scientist
	Dia 7: Think like a computer scientist
	Dia 8: Goal
	Dia 9: Design cycle
	Dia 10
	Dia 11: Design cycle
	Dia 12: Design cycle
	Dia 13: Algorithm
	Dia 14
	Dia 15
	Dia 16: Algorithm
	Dia 17: Programmeren
	Dia 18: Programmeren
	Dia 19: Programmeren
	Dia 20: Programmeertalen
	Dia 21: Programmeertalen
	Dia 22: Programmeertalen
	Dia 23: Translate source code
	Dia 24: Translate source code
	Dia 25: Translate source code
	Dia 26: Python runtime
	Dia 27: Python runtime
	Dia 28: What is a program?
	Dia 29: What is an instruction?
	Dia 30: Programmeren
	Dia 31: Wat is debuggen?
	Dia 32
	Dia 33: Wat is debuggen?
	Dia 34: Wat is debuggen?
	Dia 35: Wat is debuggen?
	Dia 36: Wat is debuggen?
	Dia 37: Wat is debuggen?
	Dia 38
	Dia 39
	Dia 40
	Dia 41
	Dia 42: Formal and natural languages
	Dia 43: Formal and natural languages
	Dia 44: Formal languages
	Dia 45: Formal languages
	Dia 46: Formal and natural languages
	Dia 47: Formal and natural languages
	Dia 48: Hello, World !
	Dia 49: Homework (hands-on sessions)
	Dia 50: Homework (hands-on sessions)
	Dia 51: Homework (hands-on sessions)
	Dia 52: Teaching methods
	Dia 53: Teaching methods
	Dia 54: Study material
	Dia 55: Study material
	Dia 56: Contact hours
	Dia 57: Contact hours
	Dia 58: Study coaching
	Dia 59: Study coaching: lectures
	Dia 60: Study coaching: hands-on sessions
	Dia 61: Evaluations
	Dia 62: Evaluations
	Dia 63: Questions or remarks ?
	Dia 64: The sky is the limit …

