
Ghent University
Faculty of Sciences

Prof. Dr. Peter Dawyndt

peter.dawyndt@ugent.be

@dawyndt

Python
Programming

the art of problem solving

Programming experience

A. Scratch

B. Java

C. Python

D. HTML/CSS/JavaScript

E. none (never programmed before)

What programming language do you master best?

Socrative – The DTL Guide

socrative.com

room: 407122

http://www.socrative.com/

Think like a computer scientistGoal

teach you to think like a computer scientist

Think like a computer scientistGoal

teach you to think like a computer scientist

this way of thinking combines best features of

• mathematics

➢ use formal languages to denote ideas (computations)

• engineering

➢ design things

➢ assemble components into systems

➢ evaluate tradeoffs among alternatives

• natural science

➢ observe behaviour of complex systems

➢ form hypotheses

➢ test predictions

Think like a computer scientistGoal

problem solving is the single most
important skill for a computer scientist

• formulate problems

• think creatively about solutions

• express a solution clearly and accurately

learning to program is all about
learning to solve problems

Goal

doing > knowing

learning by doing

Design cycle
Houston, we

have a problem

programming
language

problem
solving

le
ct

u
re

s
week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12

re
ad

in
g
m
at
e
ri
al

h
an

d
s-

o
n

 s
e

ss
io

n
extra
week

co
u

rs
e

b
o

o
k

C
H

9

co
u

rs
e

b
o

o
k

C
H

5

co
u

rs
e

b
o

o
k

C
H

0

co
u

rs
e

b
o

o
k

C
H

2

co
u

rs
e

b
o

o
k

C
H

3

co
u

rs
e

b
o

o
k

C
H

4

co
u

rs
e

b
o

o
k

C
H

6

co
u

rs
e

b
o

o
k

C
H

8

co
u

rs
e

b
o

o
k

C
H

1
1

co
u

rs
e

b
o

o
k

C
H

1
2

co
u

rs
e

b
o

o
k

C
H

1
3

co
u

rs
e

b
o

o
k

C
H

1

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

9

co
u

rs
e

b
o

o
k

C
H

1
0

co
u

rs
e

b
o

o
k

C
H

1
4

co
n

d
it

io
n

al
s

lo
o

p
s

p
u

tt
in

g
it

al
l

to
ge

th
er

fu
n

ct
io

n
s

lis
ts

an
d

 t
u

p
le

s

lis
ts

an
d

 t
u

p
le

s

ad
va

n
ce

d
fu

n
ct

io
n

s

lis
t

co
m

p
re

h
en

si
o

n
s

an
d

 m
o

d
u

le
s

se
ts

 a
n

d

d
ic

ti
o

n
ar

ie
s

te
xt

fi
le

s

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

st
ri

n
gs

b
as

ic
 p

ro
gr

am
m

in
g

p
ri

n
ci

p
le

s

ex
p

re
ss

io
n

s
an

d

st
at

em
en

ts

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

lis
ts

an
d

 t
u

p
le

s

ad
va

n
ce

d
fu

n
ct

io
n

s
an

d
 m

o
d

u
le

s

ev
al

u
at

io
n

ex
p

re
ss

io
n

s
an

d

st
at

em
en

ts

co
n

d
it

io
n

al
s

lo
o

p
s

st
ri

n
gs

fu
n

ct
io

n
s

ev
al

u
at

io
n

se
ts

 a
n

d

d
ic

ti
o

n
ar

ie
s

te
xt

fi
le

s

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

fu
n

ct
iio

s
lis

ts
an

d
 t

u
p

le
s

Design cycle
Houston, we

have a problem

programming
language

problem
solving

Design cycle

1. describe and analyze the problem

➢ what should the program do ?

➢ what is the input, and what is the expected output ?

2. design an algorithm (pseudocode)

➢ how to achieve the result ?

3. convert algorithm into source code

➢ following syntax rules of chosen programming language

4. compile source code into machine language

5. execute the program

6. trace potentional errors (debugging)

A

B

C

D

D

E

Socrative – The DTL Guide

socrative.com

room: 407122

http://www.socrative.com/

Algorithm

lamp does
not shine

plug lamp
in outlet

replace
bulb

buy new
lamp

bulb burned
out ?

lamp in
outlet ?

no

yes

no

yes

?
1 2 3

A stamp issued September 6, 1983 in the Soviet Union, commemorating Muḥammad ibn Mūsā al-
Khwārizmī's (approximate) 1200th birthday. Persian mathematician, astronomer and geographer.
The word algorithm refers to Algoritmi, the Latin translation of his name. PICTURE WIKIMEDIA

Algorithm

x
x
x
x
x
x
x
x

y
y
y
y
y
y
y
y

ProgrammerenComputer programming

ProgrammerenComputer programming

The purpose of programming is to create a set of
instructions in a programming language that
computers use to automatically perform specific
operations or to exhibit desired behaviors.

https://en.wikipedia.org/wiki/Computer_programming

ProgrammerenProgramming languages

A programming language can be used to create programs that control
the behavior of a machine or to express algorithms precisely.
Programming languages differ in syntax and grammar from natural
languages, as languages that are used for interaction between people
are too complex and full of ambiguities. Text written in a programming
language (source code) should allow humans to communicate
instructions that machines only can interpret in a unique way.

define harmonic function

from numpy import pi, sin, cos, mgrid

dphi, dtheta = pi/250.0, pi/250.0

[phi,theta] = mgrid[0:pi+dphi*1.5:dphi,0:2*pi+dtheta*1.5:dtheta]

m0 = 4; m1 = 3; m2 = 2; m3 = 3; m4 = 6; m5 = 2; m6 = 6; m7 = 4;

r = sin(m0*phi)**m1 + cos(m2*phi)**m3 + sin(m4*theta)**m5 + \

cos(m6*theta)**m7

x = r*sin(phi)*cos(theta)

y = r*cos(phi)

z = r*sin(phi)*sin(theta)

plot harmonic function

from mayavi import mlab

s = mlab.mesh(x, y, z)

mlab.show()

https://en.wikipedia.org/wiki/Programming_language

ProgrammeertalenProgramming languages

ProgrammeertalenProgramming languages

• two types of programming languages

➢ high-level languages

▪ Python, Java, C/C++, Perl, Ruby

➢ low-level languages

▪ assembly or machine languages

▪ hardware-specific

o Intel x86 (Pentium) ̶ IBM PC compatibles

o Motorola/IBM PowerPC ̶ Apple Macintosh; IBM servers

o Sun SPARC ̶ Sun servers

• computers only execute low-level languages

➢ programs written in high-level languages are translated

to the machine language of a specific computer system

ProgrammeertalenProgramming languages

• advantage of low-level programming language

➢ program can be tuned to specific computer system

▪ maximum execution speed

▪ minimum memory consumption

• advantage of high-level programming languages

➢ easier to program

▪ less time to write

▪ shorter and easier to read

▪ more likely to be correct (fewer bugs)

➢ much easier to port, or modify to run on different computers

today almost all programs are written
 in high-level programming languages

Translate source code

compiler
source
code

object
code

program

input

program
output

program

• scenario 1: compiled languages (C, C++)

➢ source code translated to machine language by compiler

➢ stored as an executable file (object code)

➢ program loaded from memory and executed

Translate source code

interpreter

source
code

program
input

program
output

• scenario 2: interpreted languages (Perl, Bash)

➢ source code translated to machine language by interpreter

➢ interpreter immediately executes object code

➢ this happens line by line

Translate source code

compiler
source
code

byte code

program
input

program
output

virtual
machine

• scenario 3: hybrid approach (Python, Java)

➢ source code translated to byte code by compiler

➢ stored as an "intermediate" file

➢ interpreted by separate program on execution

▪ Python runtime, Java Virtual Machine (JVM)

$ python3

Python 3.2.3 (default, Apr 11 2012, 07:15:24)

Type "help" for more information.

>>>

2

2

print(1 + 1)

print(1 + 1)

Python runtime

• may be executed in two different ways

➢ interactive session (shell mode)

▪ enter a Python instruction

▪ interpreter immediately executes instruction and returns result

leeg.doc
leeg.doc

$ cat firstprogram.py

python3 firstprogram.py

 python3 firstprogram.py

Python runtime

• may be executed in two different ways

➢ interactive session (shell mode)

▪ enter a Python instruction

▪ interpreter immediately executes instruction and returns result

➢ non-interactive session (script mode)

▪ store Python instructions into a text file

▪ tell the interpreter to execute is

print(1 + 1)$

print(1 + 1)

$

2

2

leeg.doc
leeg.doc
leeg.doc

What is a program?

• a sequence of instructions that specifies how to

perform a computation

• examples

➢ mathematical

▪ solving a system of equations

▪ finding the roots of a polynomial

➢ symbolic computation

▪ searching and replacing text in a document

▪ interpreting a program (like the Python interpreter)

What is an instruction?

• different programming languages

→ different instructions (commands, statements)

• common basic instructions
➢ read input

▪ get data from the keyboard, a file, or some other device

➢ produce output

▪ display data on the screen or send data to a file or other device

➢ math

▪ perform basic mathematical operations like addition and multiplication

➢ conditional execution

▪ check certain conditions and execute appropriate sequence of statements

➢ repitition

▪ perform some action repeatedly, usually with some variation

ProgrammerenWhat is programming?

All programs consist of instructions like these. So one way
to describe programming is the process of breaking a
large, complex task up into smaller and smaller subtasks
until eventually the subtasks are simple enough to be
performed with one of these simple instructions.

Wat is debuggen?What is debugging?

Wat is debuggen?What is debugging?

three kinds of programming errors

• compiler-generated errors (syntax errors)

• errors during code execution (run-time errors)

• logical errors (semantic errors)

Wat is debuggen?What is debugging?

three kinds of programming errors

• compiler-generated errors (syntax error)

➢ Python cannot execute a program unless it is syntactically correct

➢ otherwise it returns an error message without starting the program

➢ syntax refers to program structure and rules about that structure

• example in natural language

➢ grammar rule: a sentence must begin with a capital letter and end

with a period

▪ "this sentence contains a syntax error."

▪ "So does this one"

Wat is debuggen?What is debugging?

three kinds of programming errors

• compiler-generated errors (syntax error)

➢ Python cannot execute a program unless it is syntactically correct

➢ otherwise it returns an error message without starting the program

➢ syntax refers to program structure and rules about that structure

• Python example

➢ mismatching parenthesis

>>> print(5 / 2))

File "<stdin>", line 1

print(5 / 2))

^

SyntaxError: invalid syntax

Wat is debuggen?What is debugging?

three kinds of programming errors

• errors during code execution (run-time error)

➢ do not occur until program is run and faulty line is executed

➢ called exception because something exceptional () has happened

➢ exection of program is usually terminated at this point

➢ information about current state of program is printed

• Python example

➢ division by zero

>>> 5 / 0

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

ZeroDivisionError: integer division or modulo by zero

Wat is debuggen?What is debugging?

three kinds of programming errors

• logical errors (semantic error)

➢ program runs successfully

▪ in the sense that it does not generate error messages

➢ but it does not do what you want it to do

▪ it returns the wrong result

▪ it is doing what you told it to do !!

Debugging logical errors requires you to work
backwards from the observed output (if any) to

determine what the program is actually doing internally.

Experimental debugging

Experimental debugging

• one of the most important skills you will acquire

in this class is debugging

➢ some programmers believe debugging is one of the

most intellectually rich, challenging, and interesting

parts of programming

➢ some students soon enough associate debugging

with a strong feeling of frustration

Experimental debugging

⎯ Sherlock Holmes
uit The Sign of Four (Arthur Conan Doyle)

"When you have eliminated the impossible,
whatever remains, however improbable,

must be the truth"

• debugging is like detective work

➢ you are confronted with clues

➢ you have to infer the processes and events

that lead to the results you see

Experimental debugging

• debugging is also like an experimental science

➢ form hypothesis about cause of error

➢ modify program, and predict new outcome

➢ if results match prediction, hypothesis is correct

➢ otherwise, modify hypothesis

Formal and natural languages

• natural languages

➢ spoken by people (like English, French and Arab)

➢ not designed by people; they evolved naturally

• formal languages

➢ designed by humans for specific applications

▪ mathematicians

o mathematical notation: denotes relationships between numbers and symbols

▪ chemists

o chemical notation: represents chemical structure of molecules

▪ computer science

o programming language: designed to express computations

Formal and natural languages

• natural languages

➢ spoken by people (like English, French and Arab)

➢ not designed by people; they evolved naturally

• formal languages

➢ tend to have strict rules about syntax

▪ 3+3=6 is a syntactically correct mathematical statement

▪ 3=+6$ is not

▪ H20 is syntactically correct chemical name

▪ 2Zz is not

Formal languages

• two types of syntax rules

➢ token rules

▪ tokens are basic elements of the language

o words

o numbers

o chemical elements

▪ in 3=+6$, $ is not a legal token in mathematics

▪ in 2Zz, there is no chemical element with abbreviation Zz

➢ structure rules

▪ the way tokens are arranged into a statement

▪ in 3=+6$, plus is not allowed to follow equal signs

▪ in 2Zz, subscripts must come after the element name, not before

Formal languages

• two types of syntax rules

➢ token rules

➢ structure rules

• process of determining the structure of a sentence

in a natural or formal language is called parsing

➢ example: "The other shoe fell."

▪ "the other shoe" is the subject

▪ "fell" is the verb

• after parsing a sentence you can determine the

meaning or semantics of the sentence

Formal and natural languages

• formal and natural languages share

➢ words

➢ structure

➢ syntax

➢ semantics

➢ difference between formal and natural languages

compares to difference between prose and poetry

Formal and natural languages

• formal and natural languages differ on

➢ ambiguity

▪ natural languages are full of ambiguity; people use contextual clues and

other information

▪ formal languages are designed to be unambiguous; each statement has

exactly one meaning

➢ redundancy

▪ natural languages are redundant to make up for ambiguity and to reduce

miscommunications

▪ natural languages are verbose

▪ formal languages are less redundant and more concise

➢ literalness

▪ natural languages are full of idiom and metaphor: no shoe, no falling

▪ formal languages mean exactly what they say

$ cat HelloWorld.py

Hello, World !

python3 HelloWorld.py

 python3 HelloWorld.py

print('Hello, World!')$

print('Hello, World!')

$

Hello, World !

Hello, World !

leeg.doc
leeg.doc
leeg.doc

Homework (hands-on sessions)

• course book: read chapters 0 and 1

➢ in preparation of the next hands-on session

➢ Punch W & Enbody R (2017, global edition)

The practice of computing using Python. Addison-Wesley

ISBN-13: 978-1-29216-662-9

▪ PDF-version available on Ufora

▪ second and third edition of the book can still be used

as it also covers Python 3

Homework (hands-on sessions)

• video tutorials

➢ first Python program in PyCharm

➢ interactive Python sessions in PyCharm

• check practical information

➢ Ufora

➢ Dodona

https://ufora.ugent.be/d2l/home/1196609
https://dodona.be/en/courses/5090/
https://www.youtube.com/watch?v=VMSpDok9l4c
https://www.youtube.com/watch?v=rWX3fK16kXk

Homework (hands-on sessions)

• solve mandatory exercises series 01

(deadline Tuesday, September 30, 2025, 22:00)

➢ ISBN (demo, video)

➢ Sum of two integers

➢ Best laid plans

➢ The pudding guy

➢ Human Development Index

➢ The stopped clock

http://www.mathworks.com/matlabcentral/fx_files/27297/1/video.jpg

video

https://dodona.be/en/courses/5090/series/58572/activities/910319224/
https://dodona.be/en/courses/5090/series/58572/activities/1555355466/
https://dodona.be/en/courses/5090/series/58572/activities/1135534568/
https://dodona.be/en/courses/5090/series/58572/activities/761303597/
https://dodona.be/en/courses/5090/series/58572/activities/554093539/
https://dodona.be/en/courses/5090/series/58572/activities/1477235114/
https://youtu.be/AU-hPL8NgDo
https://youtu.be/AU-hPL8NgDo

Teaching methods

• independent work
➢ detailed planning in Dodona course

➢ read course book: essential preparation for lectures

➢ additional preparatory tasks: essential preparation for hands-on sessions

➢ mandatory exercises: essential for learning to code

➢ try to solve as many exercises as possible before the hands-on sessions

➢ ask questions via Dodona, Ufora, or during lectures and hands-on sessions

➢ good preparation is the best way to learn to code

https://dodona.be/en/courses/5090/

Teaching methods

• lectures
➢ programming techniques explained through examples

➢ essential preparation: read course book, read in-class assignments

➢ opportunity to think along and ask questions !!!

➢ arrive in time and turn off your cell phone

• hands-on sessions
➢ work on mandatory programming exercises in PC-room

➢ use course book and Python documentation as reference material

➢ use your own laptop to solve exercises (BYOD)

➢ opportunity to ask questions to peers and teaching assistants

➢ collaboration between students allowed (max 3 students per group)

Study material

• course book
➢ Punch W & Enbody R (global edition, 2017).

The practice of computing using Python.
Addison-Wesley, 978-1-29216-662-9.

• reference books
➢ Mark Lutz (2009). Learning Python: Powerful Object-Oriented

Programming (4th edition). O'Reilly Media, 978-0596158064.

➢ Mark Lutz (2011). Programming Python (4th edition).
O'Reilly Media, 978-0596158101.

Study material

• powerpoint slides
➢ shared on Ufora

➢ please report any errors or ambiguities

➢ updated versions of slides may replace older ones

• background material
➢ additional reading material

➢ shared on Ufora

• reference material
➢ help function in interactive session (built-in documentation)

➢ The Python Tutorial

➢ The Python Standard Library

https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/tutorial/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html

Contact hours

• lectures

➢ join one of these two sessions
▪ initial assignment in TimeEdit based on your study program

▪ feel free to join another sessions (no need to ask permission to switch sessions)

▪ available for all lectures: livestream + recording (see Ufora Calendar)

➢ Dutch track

o Monday 11:30 – 12:45 (week 1-4)

▪ Campus Sterre, S9 building, auditorium A2 (second floor)

o Thursday 08:30 – 09:45 (week 1-12)

▪ Campus Sterre, S9 building, auditorium A0 (ground floor)

➢ English track

o Monday 14:30 – 17:15 (week 1-12)

▪ online (MS Teams)

https://soleway.ugent.be/?to=40.09.120.021&exact=true
https://soleway.ugent.be/?to=40.09.100.030&exact=true

Contact hours

• hands-on sessions

➢ join one of these two sessions
▪ initial assignment in TimeEdit based on your study program

▪ feel free to join another sessions (no need to ask permission to switch sessions)

➢ Friday 10:00 – 12:15 (week 1-12)
▪ Campus Boekentoren, room 0.9 (ground floor + floor -1)

▪ study programs: biochemistry & biotechnology, biology, geography,
pharmaceutical engineering

➢ Friday 14:30 – 17:15 (week 1-12)
▪ Campus Boekentoren, room 0.9 (ground floor + floor -1)

▪ study programs: chemistry, geology, physics & astronomy, statistical data analysis

https://soleway.ugent.be/?to=05.01.100.037&exact=true
https://soleway.ugent.be/?to=05.01.100.037&exact=true

Study coaching

• all "ad valvas" announcements via Ufora

• ask questions and make comments
➢ during lectures and hands-on sessions

➢ via Ufora discussions

➢ immediately after lectures

➢ during a personal appointment (arrange via email)

▪ do not send emails from an anonymous email account

▪ always use your Ugent email account

▪ always mention your name, study program and related course

▪ avoid typos, spelling mistakes and texting language ()

▪ use clear language and a correct form of address

Study coaching: lectures

• lecturer

➢ Prof. Dr. Peter Dawyndt

▪ Department of Mathematics, Computer Science and Statistics

▪ office: Campus Sterre, Krijgslaan 281, S9 building

▪ phone: +32 9 264 47 79

▪ email: peter.dawyndt@ugent.be

➢ research topics

▪ computational biology (bioinformatics)

▪ computer science education

Study coaching: hands-on sessions

Maarten Stevens
maarten.stevens@ugent.be

Thomas Van Mullem
thomas.vanmullem@ugent.be

Rien Maertens
rien.maertens@ugent.be

Mustapha Regragui
mustapha.regragui@ugent.be

Vincent Batens
vincent.batens@ugent.be

Emma Vandewalle
emmavdwa.vandewalle@ugent.be

Tibo De Peuter
tibo.depeuter@ugent.be

Wouter De Bolle
wouter.debolle@ugent.be

Evaluations

• mandatory programming exercises
➢ put theory into practice

➢ weekly deadlines

▪ series 01 – series 05: Tuesday 22:00

▪ series 06 – series 10: Tuesday 22:00

• evaluations
➢ solve two exercises in two hours

➢ follows same procedure as exam

➢ lower level of difficulty compared to exam: tests basic skills

• other programming exercises
➢ non-mandatory

➢ learning to code = practice, practice, practice, …

Evaluations

• non-periodic evaluations count for 4/20
➢ triple profit !!!

➢ cannot be taken again for resit exam

• evaluation score takes into account mandatory exercises
solved before weekly deadlines

• assessment
➢ solutions for mandatory exercises before weekly deadlines

➢ solutions for two new exercises during evaluation

➢ feedback

▪ sample solutions shared after weekly deadlines

▪ score and personal feedback shared shortly after evaluation

Questions or remarks ?

"Whatever you thought, think again"

The sky is the limit …

⎯ National Geographic Magazine⎯ National Geographic Magazine

"Whatever you thought, think again"

	Dia 1: Python Programming
	Dia 2
	Dia 3
	Dia 4: Programming experience
	Dia 5: Think like a computer scientist
	Dia 6: Think like a computer scientist
	Dia 7: Think like a computer scientist
	Dia 8: Goal
	Dia 9: Design cycle
	Dia 10
	Dia 11: Design cycle
	Dia 12: Design cycle
	Dia 13: Algorithm
	Dia 14
	Dia 15
	Dia 16: Algorithm
	Dia 17: Programmeren
	Dia 18: Programmeren
	Dia 19: Programmeren
	Dia 20: Programmeertalen
	Dia 21: Programmeertalen
	Dia 22: Programmeertalen
	Dia 23: Translate source code
	Dia 24: Translate source code
	Dia 25: Translate source code
	Dia 26: Python runtime
	Dia 27: Python runtime
	Dia 28: What is a program?
	Dia 29: What is an instruction?
	Dia 30: Programmeren
	Dia 31: Wat is debuggen?
	Dia 32
	Dia 33: Wat is debuggen?
	Dia 34: Wat is debuggen?
	Dia 35: Wat is debuggen?
	Dia 36: Wat is debuggen?
	Dia 37: Wat is debuggen?
	Dia 38
	Dia 39
	Dia 40
	Dia 41
	Dia 42: Formal and natural languages
	Dia 43: Formal and natural languages
	Dia 44: Formal languages
	Dia 45: Formal languages
	Dia 46: Formal and natural languages
	Dia 47: Formal and natural languages
	Dia 48: Hello, World !
	Dia 49: Homework (hands-on sessions)
	Dia 50: Homework (hands-on sessions)
	Dia 51: Homework (hands-on sessions)
	Dia 52: Teaching methods
	Dia 53: Teaching methods
	Dia 54: Study material
	Dia 55: Study material
	Dia 56: Contact hours
	Dia 57: Contact hours
	Dia 58: Study coaching
	Dia 59: Study coaching: lectures
	Dia 60: Study coaching: hands-on sessions
	Dia 61: Evaluations
	Dia 62: Evaluations
	Dia 63: Questions or remarks ?
	Dia 64: The sky is the limit …

