
Ghent University
Faculty of Sciences

Prof. Dr. Peter Dawyndt

peter.dawyndt@ugent.be

@dawyndt

Python
Programming

express yourself

Software testen

Ooooh! The last bug!

learning effect

exercises

learning
materials

evaluation approachability

structure

teaching style

Programming

UGent

The flipped classroom

traditional classroom (ideal world)

lecture study examstudylecture study lecture study

Poh MZ, Swenson NC, Picard RW (2010). A wearable

sensor for unobtrusive, long-term assessment of

electrodermal activity. IEEE Transactions on

Biomedical Engineering 57(5), 1243-1252.
http://www.eurofast.eu/dev1/images/stories/icon-publication.jpg

The flipped classroom

http://affect.media.mit.edu/pdfs/10.Poh-etal-TBME-EDA-tests.pdf

The flipped classroom

traditional classroom (ideal world)

lecture study examstudylecture study lecture study

The flipped classroom

traditional classroom (real world)

lecture exam

study

lecture lecture

flipped classroom

lecturestudy examstudylecturestudy lecturestudy

practice practice practice

active learning

Assistentie

Programming = testing software

Evaluation

• mandatory exercises
➢ evaluation series = 5 series of 6 mandatory exercises

➢ push students to bring theory into practice

➢ weakly deadlines on Tuesdays at 22:00

➢ submit to Dodona before set deadlines (see overview)

➢ gradually build up towards exam level exercises

• permanent evaluations
➢ 2 evaluations in weeks 7 and 13 (during hands-on sessions)

➢ per evaluation: solve 2 exercises within 2 hours

➢ level: evaluation exercises are easier than exam exercises

➢ tests basic programming skills

• periodic evaluation (exam)

➢ exam = solve 3 exercises within 3.5 hours

➢ level: exam exercises are more difficult than evaluation exercises

https://dodona.be/en/courses/5090/

le
ct

u
re

s
week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12

re
ad

in
g

m
at

er
ia

l
h

an
d

s-
o

n
 s

es
si

o
n

extra
week

co
u

rs
e

b
o

o
k

C
H

9

co
u

rs
e

b
o

o
k

C
H

5

co
u

rs
e

b
o

o
k

C
H

0

co
u

rs
e

b
o

o
k

C
H

2

co
u

rs
e

b
o

o
k

C
H

3

co
u

rs
e

b
o

o
k

C
H

4

co
u

rs
e

b
o

o
k

C
H

6

co
u

rs
e

b
o

o
k

C
H

8

co
u

rs
e

b
o

o
k

C
H

1
1

co
u

rs
e

b
o

o
k

C
H

1
2

co
u

rs
e

b
o

o
k

C
H

1
3

co
u

rs
e

b
o

o
k

C
H

1

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

9

co
u

rs
e

b
o

o
k

C
H

1
0

co
u

rs
e

b
o

o
k

C
H

1
4

co
n

d
it

io
n

al
s

lo
o

p
s

p
u

tt
in

g
it

al
l

to
ge

th
er

fu
n

ct
io

n
s

lis
ts

an
d

 t
u

p
le

s

lis
ts

an
d

 t
u

p
le

s

ad
va

n
ce

d
fu

n
ct

io
n

s

lis
t

co
m

p
re

h
en

si
o

n
s

an
d

 m
o

d
u

le
s

se
ts

 a
n

d

d
ic

ti
o

n
ar

ie
s

te
xt

fi
le

s

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

st
ri

n
gs

b
as

ic
 p

ro
gr

am
m

in
g

p
ri

n
ci

p
le

s

ex
p

re
ss

io
n

s
an

d

st
at

em
en

ts

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

lis
ts

an
d

 t
u

p
le

s

ad
va

n
ce

d
fu

n
ct

io
n

s
an

d
 m

o
d

u
le

s

ev
al

u
at

io
n

ex
p

re
ss

io
n

s
an

d

st
at

em
en

ts

co
n

d
it

io
n

al
s

lo
o

p
s

st
ri

n
gs

fu
n

ct
io

n
s

ev
al

u
at

io
n

se
ts

 a
n

d

d
ic

ti
o

n
ar

ie
s

te
xt

fi
le

s

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

fu
n

ct
iio

s
lis

ts
an

d
tu

p
le

s

Evaluation

• mandatory exercises
➢ evaluation series = 5 series of 6 mandatory exercises

➢ push students to bring theory into practice

➢ weakly deadlines on Tuesdays at 22:00

➢ submit to Dodona before set deadlines (see overview)

➢ gradually build up towards exam level exercises

• permanent evaluations
➢ 2 evaluations in weeks 7 and 13 (during hands-on sessions)

➢ per evaluation: solve 2 exercises within 2 hours

➢ level: evaluation exercises are easier than exam exercises

➢ tests basic programming skills

• periodic evaluation (exam)

➢ exam = solve 3 exercises within 3.5 hours

➢ level: exam exercises are more difficult than evaluation exercises

https://dodona.be/en/courses/5090/

Practice, practice, practice

Evaluation

• evaluation score accounts for 4/20 on total score
➢ triple profit !!!

➢ cannot be retaken during second examination period

• other exercises
➢ non-committal (use them e.g. in preparation for the exams)

➢ sample exam

➢ learn to program = practice, practice, practice, …

Permanent evaluation score
m

an
d

at
o

ry
 e

xe
rc

is
es

ev
al

u
at

io
n

 e
xe

rc
is

es

c : number of mandatory exercises submitted
correctly before the weekly deadlines

a : number of mandatory exercises

score
obtained for
evaluation
exercises

s:

finale score = s ×
c

a

https://dodona.be/en/courses/5090/

Permanent evaluation score
m

an
d

at
o

ry
 e

xe
rc

is
es

ev
al

u
at

io
n

 e
xe

rc
is

es

c : number of mandatory exercises submitted
correctly before the weekly deadlines

a : number of mandatory exercises

score
obtained for
evaluation
exercises

s:

finale score = s ×
c

a

16/20

30/30

= 16 ×
30

30
= 16

https://dodona.be/en/courses/5090/

Permanent evaluation score
m

an
d

at
o

ry
 e

xe
rc

is
es

ev
al

u
at

io
n

 e
xe

rc
is

es

c : number of mandatory exercises submitted
correctly before the weekly deadlines

a : number of mandatory exercises

score
obtained for
evaluation
exercises

s:

finale score = s ×
c

a

16/20

18/30

= 16 ×
18

30
= 9.6

https://dodona.be/en/courses/5090/

Values and data types

Values and data types

• object: one of the fundamental things (like a letter or a

 number) that a computer program manipulates

➢ strings: 'Hello, World!'

➢ integers: 17

➢ floats: 3.2

>>> print(4)

4

>>> print(2.7)

2.7

Values and data types

• object: one of the fundamental things (like a letter or

 number) that a computer program manipulates

➢ strings: 'Hello, World!'

➢ integers: 17

➢ floats: 3.2

▪ each object has a data type (strongly typed)

>>> type('Hello, World!') # strings

<class 'str'>

>>> type(17) # integers

<class 'int'>

>>> type(3.2) # floating points

<class 'float'>

Values and data types

• object: one of the fundamental things (like a letter or

 number) that a computer program manipulates

➢ strings: 'Hello, World!'

➢ integers: 17

➢ floats: 3.2

▪ each object has a data type (strongly typed)

>>> type('17')

<class 'str'>

>>> type('3.2')

<class 'str'>

Values and data types

>>> type('This is a string.')

<class 'str'>

>>> type("And so is this.")

<class 'str'>

>>> print("Bruce's beard")

Bruce's beard

>>> print('The knights who say "Ni!"')

The knights who say "Ni!"

• strings are enclosed in single or double quotes

➢ strings enclosed in double quotes can contain single quotes

➢ strings enclosed in single quotes can contain double quotes

Values and data types

>>> print(1,000,000)

1 0 0

>>> print('a', 'b', 'c')

a b c

>>> print(1.000.000)

File "<stdin>", line 1

print(1.000.000)

^

SyntaxError: invalid syntax

• it is illegal to use commas or dots between groups of three

digits when typing large integers (American notation)

➢ 1,000,000 is interpreted as a tuple containing 3 objects

that need to be printed one after the other

Variables

>>> welcome = 'Hello, World!'

>>> print(welcome)

Hello, World!

computer memory (RAM)

welcome

• variable: name that points to an object

➢ assignment statement

▪ create new variable

▪ assign object to variable

➢ points to location in computer memory where object is stored

➢ using name in expression fetches object from computer memory

'Hello, World!' 'Hello, World!'

Variables

• assignment operator =

➢ used in assignment statement

➢ should not be confused with equality test (==)

➢ links an object (right-hand side) with a name (left-hand side)

▪ lhs must always contain variable name

▪ rhs must always contain expression that evaluates to object

>>> message = "What's up, Doc?"

>>> n = 17

>>> pi = 3.14159

>>> 17 = n

File "<stdin>", line 1

SyntaxError: can't assign to literal

Variables

4 cm

3

c
mx

3. Find x

x = (y**2 + z**2)**0.5x = y2 + z2

• variable: name that points to an object

➢ name and object are two different things

➢ data type is property of an object

▪ data type can be inferred from variable name

x = math.sqrt(y**2 + z**2)

>>> type(message)

<class 'str'>

>>> type(n)

<class 'int'>

>>> type(pi)

<class 'float'>

State diagram
names (namespace) objects (memory)

>>> message = "What's up, Doc?"

>>> n = 17

>>> pi = 3.14159

message

references

"What's up, Doc?"

str

n 17

int

pi 3.14159

float

Dynamic typing
names (namespace) objects (memory)

>>> a = 3 # a is an integer number

>>> a = 'spam' # now it is a string

>>> a = 1.23 # and now a floating point number

a

references

3

int

'spam'

str

1.23

float

Garbage collection
names (namespace) objects (memory)

a

references

1.23

float

>>> a = 3 # an integer number

>>> a = 'spam' # now it is a string

>>> a = 1.23 # and now a floating point number

'spam'

str

3

int

Multiple references
names (namespace) objects (memory)

>>> a = 3

>>> b = 4

>>> print(id(a), id(b))

35570440 35570416

>>> b = a

>>> print(id(a), id(b))

35570440 35570440

a

references

3

int

b 4

int

35570440

35570416

Python style guide

style rule

use long (informative) names that
document the semantics of variables

http://www.python.org/dev/peps/pep-0008/

Variable names

• variable names can be arbitrarily long

➢ should not start with a digit

➢ can contain letters, digits and underscores (_)

➢ case sensitive: difference between uppercase and lowercase

▪ spam and SPAM are different names

>>> 76trombones = 'big parade'

SyntaxError: invalid syntax

>>> googol$ = 100

SyntaxError: invalid syntax

Python style guide

style rule

avoid using names that only
contain uppercase letters

http://www.python.org/dev/peps/pep-0008/

Variable names

• variable names can be arbitrarily long

➢ should not start with a digit

➢ can contain letters, digits and underscores (_)

➢ case sensitive: difference between uppercase and lowercase

▪ spam and SPAM are different names

➢ Python keywords cannot be used as variable names

▪ they define the language's rules and structure

>>> 76trombones = 'big parade'

SyntaxError: invalid syntax

>>> googol$ = 100

SyntaxError: invalid syntax

>>> class = "Programming"

SyntaxError: invalid syntax

Python keywords

False None True and as assert

break class continue def del elif

else except finally for from global

if import in is lambda nonlocal

not or pass raise return try

while with yield

Operators and operands

• operator: special symbol that represents a computation

➢ examples

▪ addition: +

▪ multiplication: *

➢ operand: value used by operator

➢ when a variable name appears in place of an operand, it is

replaced with its value before the operation is performed

20 + 32

hours - 1

hours * 60 + minutes

minutes // 60

5 ** 2

(5 + 9) * (15 - 7)

Division

• Python differentiates floating point from integer division

➢ operator / computes floating point division (always results in a float)

➢ operator // computes quotient (integer division)

➢ modulo operator % computes remainder after integer division

>>> 83 / 10 # floating point division

8.3

>>> 83 // 10 # quotient (integer division)

8

>>> 83 % 10 # remainder (modulo)

3

Division

• Python differentiates floating point from integer division

➢ operator / computes floating point division (always result in a float)

➢ operator // computes quotient (integer division)

➢ modulo operator % computes remainder after integer division

>>> 83.0 / 10.0 # floating point division

8.3

>>> 83.0 // 10 # quotient (integer division)

8.0

>>> 83 // 10.0 # quotient (integer division)

8.0

>>> 83.0 % 10 # remainder (modulo)

3.0

>>> 83 % 10.0 # remainder (modulo)

3.0

Type conversion

• each Python type comes with a built-in function that

attempts to convert objects of another type into that type

➢ int(argument) converts any object into an integer number

➢ runtime exception if argument cannot be converted

>>> float(83) // 10

8.0

>>> int('32')

32

>>> int('Hello')

ValueError: invalid literal for int() with base 10

Type conversion

• each Python type comes with a built-in function that

attempts to convert objects of another type into that type

➢ int(argument) converts any object into an integer number

➢ runtime exception if argument cannot be converted

➢ fractional part is truncated if floats are converted to integers

>>> int(-2.3)

-2

>>> int(3.99999)

3

>>> int('42')

42

>>> int(1.0)

1

Type conversion

• each Python type comes with a built-in function that

attempts to convert objects of another type into that type

➢ float(argument) converts any object into a float number

➢ difference between integer 1 and floating point 1.0

▪ distinct data types

▪ distinct internal representation in computer memory

(see additional slides)

>>> float(32)

32.0

>>> float('3.14159')

3.14159

>>> float(1)

1.0

Type conversion

• each Python type comes with a built-in function that

attempts to convert objects of another type into that type

➢ str(argument) converts any object into a string

>>> str(32)

'32'

>>> str(3.14149)

'3.14149'

>>> str(True)

'True'

>>> str(true)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'true' is not defined

Order of operations

• order of evaluation depends on rules of precedence

➢ operators that are higher in table have higher precedence

➢ operators on same row are evaluated from left to right

➢ see appendix E in course book for complete precedence table

operator description

() brackets (grouping)

** power

+x, -x positive, negative (unairy)

*, /, % multiplication, division, remainder

+, - addition, subtraction

Operations on strings

• in general you cannot compute with strings

➢ even if the strings look like numbers

➢ Python does not perform implicit type conversions

▪ except between numerical types: int, float, complex, …

▪ mixed numerical operations: int → float → complex

>>> message = "What's up, Doc?"

>>> message - 1

TypeError: unsupported operand type(s) for -: 'str' and 'int'

>>> 'Hello' / 123

TypeError: unsupported operand type(s) for /: 'str' and 'int'

>>> message * 'Hello'

TypeError: can't multiply sequence by non-int of type 'str'

>>> '15' + 2

TypeError: cannot concatenate 'str' and 'int' objects

Operations on strings

• in general you cannot compute with strings

➢ two exceptions:

▪ + operator joins strings together (concatenation)

▪ * operator repeats string a number of times (repetition)

o one operand must be a string, the other an integer

▪ analogy with numerical addition and multiplication
o 4 * 3 == 4 + 4 + 4

o 'Spam' * 3 == 'Spam' + 'Spam' + 'Spam'

>>> fruit = 'banana'

>>> baked_good = ' nut bread'

>>> print(fruit + baked_good)

banana nut bread

>>> 'Spam' * 3

'SpamSpamSpam'

>>> 3 * 'Spam'

'SpamSpamSpam'

Operations on strings

• additional string operations

▪ use built-in help-function

▪ check online Python documentation

>>> help(str)

Help on class str in module __builtin__:

...

>>> message = "What's up, Doc?"

>>> help(message.upper)

Help on built-in function upper:

upper(...)

S.upper() -> string

Return a copy of the string S converted to uppercase.

>>> print(message.upper())

WHAT'S UP, DOC?

https://docs.python.org/3/library/index.html

Python extensions

namespace global objects (memory)

>>> a = 3

>>> import math

a 3

int

• standard language can be extended using modules
➢ example: math module

namespace math

pi 3.141592653589793

float

e 2.718281828459045

float

floor <function floor>

function

Python extensions

>>> import math

>>> help(math)

Help on built-in module math:

...

>>> help(math.floor)

Help on built-in function floor in module math:

floor(...)

floor(x)

Return the floor of x as a float.

This is the largest integral value <= x.

>>> math.floor(3.7)

3.0

• standard language can be extended using modules
➢ example: math module

Python extensions

>>> math.floor(3.7) # round down

3

>>> int(3.7) # truncate

3

>>> round(3.7) # round

4

>>> math.floor(-3.7) # round down

-4

>>> int(-3.7) # truncate

-3

>>> round(-3.7) # round

-4

>>> math.ceil(-3.7) # round up

-3

• standard language can be extended using modules
➢ example: math module

Dodona

hint

use the Q&A module of Dodona to ask
questions about programming tasks

https://ufora.ugent.be/d2l/le/1196609/discussions/List

Homework (hands-on sessions)

• solve mandatory exercises series 01

(deadline Tuesday, September 30, 2025, 22:00)

➢ ISBN (demo, video)

➢ Sum of two integers

➢ Best laid plans

➢ The pudding guy

➢ Human Development Index

➢ The stopped clock

http://www.mathworks.com/matlabcentral/fx_files/27297/1/video.jpg

video

https://dodona.be/en/courses/5090/series/58572/activities/910319224/
https://dodona.be/en/courses/5090/series/58572/activities/1555355466/
https://dodona.be/en/courses/5090/series/58572/activities/1135534568/
https://dodona.be/en/courses/5090/series/58572/activities/761303597/
https://dodona.be/en/courses/5090/series/58572/activities/554093539/
https://dodona.be/en/courses/5090/series/58572/activities/1477235114/
https://youtu.be/AU-hPL8NgDo
https://youtu.be/AU-hPL8NgDo

Homework (next lecture)

• course book: read chapter 2 (control structures)

• read through the Python Style Guide

• learn yourself to use the online help

➢ use built-in help-function to study the math module

➢ Python standard library: Python extensions

➢ study extra slides about internal

representation of objects in memory

➢ demo exercises next lecture (series 02)

➢ Body-mass index

➢ Babysitter

➢ Collision detection

http://docs.python.org/3/library/index.html
http://www.python.org/dev/peps/pep-0008/
https://dodona.be/en/exercises/1797346540/
https://dodona.be/en/exercises/1301141031/
https://dodona.be/en/exercises/1228419728/

Questions or remarks ?

The sky is the limit …

"Open your arms to change,
but don't let go of your values."

⎯ Dalai Lama

Dalai Lama

1935-today

	Dia 1: Python Programming
	Dia 2: Software testen
	Dia 3
	Dia 4: The flipped classroom
	Dia 5
	Dia 6: The flipped classroom
	Dia 7: The flipped classroom
	Dia 8: Assistentie
	Dia 9: Programming = testing software
	Dia 10: Evaluation
	Dia 11
	Dia 12: Evaluation
	Dia 13: Practice, practice, practice
	Dia 14: Evaluation
	Dia 15: Permanent evaluation score
	Dia 16: Permanent evaluation score
	Dia 17: Permanent evaluation score
	Dia 18: Values and data types
	Dia 19: Values and data types
	Dia 20: Values and data types
	Dia 21: Values and data types
	Dia 22: Values and data types
	Dia 23: Values and data types
	Dia 24: Variables
	Dia 25: Variables
	Dia 26: Variables
	Dia 27: State diagram
	Dia 28: Dynamic typing
	Dia 29: Garbage collection
	Dia 30: Multiple references
	Dia 31: Python style guide
	Dia 32: Variable names
	Dia 33: Python style guide
	Dia 34: Variable names
	Dia 35: Python keywords
	Dia 36: Operators and operands
	Dia 37: Division
	Dia 38: Division
	Dia 39: Type conversion
	Dia 40: Type conversion
	Dia 41: Type conversion
	Dia 42: Type conversion
	Dia 43: Order of operations
	Dia 44: Operations on strings
	Dia 45: Operations on strings
	Dia 46: Operations on strings
	Dia 47: Python extensions
	Dia 48: Python extensions
	Dia 49: Python extensions
	Dia 50: Dodona
	Dia 51: Homework (hands-on sessions)
	Dia 52: Homework (next lecture)
	Dia 53: Questions or remarks ?
	Dia 54: The sky is the limit …

