
There is a set of four cards placed on a table, each of which has
a number on one side and a colored patch on the other side.

Which card(s) must be turned over in order to test the truth of
the proposition that if a card shows an even number on one
face, then its opposite face is red?

Ghent University
Faculty of Sciences

Prof. Dr. Peter Dawyndt

peter.dawyndt@ugent.be

@dawyndt

Python
Programming

go with the flow

le
ct

u
re

s
week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12

re
ad

in
g

m
at

er
ia

l
h

an
d

s-
o

n
 s

es
si

o
n

extra
week

co
u

rs
e

b
o

o
k

C
H

9

co
u

rs
e

b
o

o
k

C
H

5

co
u

rs
e

b
o

o
k

C
H

0

co
u

rs
e

b
o

o
k

C
H

2

co
u

rs
e

b
o

o
k

C
H

3

co
u

rs
e

b
o

o
k

C
H

4

co
u

rs
e

b
o

o
k

C
H

6

co
u

rs
e

b
o

o
k

C
H

8

co
u

rs
e

b
o

o
k

C
H

1
1

co
u

rs
e

b
o

o
k

C
H

1
2

co
u

rs
e

b
o

o
k

C
H

1
3

co
u

rs
e

b
o

o
k

C
H

1

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

9

co
u

rs
e

b
o

o
k

C
H

1
0

co
u

rs
e

b
o

o
k

C
H

1
4

co
n

d
it

io
n

al
s

lo
o

p
s

p
u

tt
in

g
it

al
l

to
ge

th
er

fu
n

ct
io

n
s

lis
ts

an
d

 t
u

p
le

s

lis
ts

an
d

 t
u

p
le

s

ad
va

n
ce

d
fu

n
ct

io
n

s

lis
t

co
m

p
re

h
en

si
o

n
s

an
d

 m
o

d
u

le
s

se
ts

 a
n

d

d
ic

ti
o

n
ar

ie
s

te
xt

fi
le

s

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

st
ri

n
gs

b
as

ic
 p

ro
gr

am
m

in
g

p
ri

n
ci

p
le

s

ex
p

re
ss

io
n

s
an

d

st
at

em
en

ts

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

lis
ts

an
d

 t
u

p
le

s

ad
va

n
ce

d
fu

n
ct

io
n

s
an

d
 m

o
d

u
le

s

ev
al

u
at

io
n

ex
p

re
ss

io
n

s
an

d

st
at

em
en

ts

co
n

d
it

io
n

al
s

lo
o

p
s

st
ri

n
gs

fu
n

ct
io

n
s

ev
al

u
at

io
n

se
ts

 a
n

d

d
ic

ti
o

n
ar

ie
s

te
xt

fi
le

s

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

fu
n

ct
iio

s
lis

ts
an

d
tu

p
le

s

Separate the leaves from the chicory, then wash and
spin them dry. Core your apples and slice them into
matchsticks. Core the pears, slice into eighths.

If they're a little underripe, grill them in a screaming
hot griddle pan until lightly charred. If they're
perfectly ripe, just place in a large bowl with the
chicory, apple and most of the herbs.

To make your dressing (see p. 517), place all your
dressing ingredients into a liquidizer and blend for
just 15 seconds until smooth. Taste to make sure
you've got a little extra acidity in there to cut
through the bitterness of the leaves, and season if
necessary.

Pour three-quarters of the dressing over the salad
and toss – I usually dress the salad lightly using the
tips of my fingers. Divide them between four plates,
and finish with a little extra dressing, the remaining
herbs and a little extra virgin olive oil. Lovely with
some walnuts crumbled over.

Pear and apple salad with chicory

▪ 4 heads chicory, a mixture of red and white if possible

▪ 2 English eating apples

▪ 2 pears

▪ 1 handful fresh soft herbs (such as chervil, tarragon,
parsley or a mixture), torn or roughly chopped

▪ 50 g strong blue cheese

▪ 50 g crème fraîche

▪ 5 tablespoons extra virgin olive oil, plus a little extra for
drizzling

▪ 4 tablespoons cider vinegar

▪ 6 tablespoons water

Control structures

statement statement statement

sequence

statement

statement

condition statement

conditional statement (branch)

Control structures

repetitive statement (loop, repetition, iteration)

statement

condition

function (method)

function

function

Control structures

• conditional statements

• repetitive statements

• functions

statement

statement

condition statement

conditional statement (branch)

Control structures

• conditional statements

• repetitive statements

• functions

Conditional execution

condition

statements1

statements2

True

False

if boolean expression:

statements

syntax

if x > 0:

print('x is positive')

example

• number of statements in body of if statement is unlimited

➢ there has to be at least one

➢ occasionally it is useful to have a body without statements

▪ e.g. as a placeholder for code has not yet been written

➢ pass statement

▪ statement that does nothing

Pass statement

if boolean expression:

statements

Pass statement

• number of statements in body of if statement is unlimited

➢ there has to be at least one

➢ occasionally it is useful to have a body without statements

▪ e.g. as a placeholder for code has not yet been written

➢ pass statement

▪ statement that does nothing

if True: # this is always true

pass # always executed, but it does nothing

Modulo operator

>>> quotient = 7 // 3

>>> print(quotient)

2

>>> remainder = 7 % 3

>>> print(remainder)

1

• modulo operator (%)

➢ works both on integers and floats

➢ yields remainder when first operand is divided by second

Modulus operator

>>> x = 18; y = 3; z = 1234

>>> x % y == 0

True

>>> z % 10 # units

4

>>> z % 100 # tens

34

• modulus operator (%)

➢ works both on integers and floats

➢ yields remainder when first operand is divided by second

• convenient operator to perform tests

➢ check whether x is divisible by y

➢ determine rightmost digits of an integer

Boolean values

• data type bool

➢ representation of values True and False

▪ case sensitive

➢ named after British mathematician George Boole

▪ founder of the Boolean algebra

>>> type(True)

<class 'bool'>

>>> type(False)

<class 'bool'>

>>> type(true)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'true' is not defined

Boolean expressions

• Boolean expression

➢ expression that evaluates to a boolean value

➢ operator == compares two values

▪ produces a boolean value

▪ example of a comparison operator

>>> 5 == 5

True

>>> 5 == 6

False

>>> x = (5 == 5)

>>> print(x)

True

Comparison operators

operator meaning

x == y is equal to

x != y is not equal to

x < y is less than

x > y is greater than

x <= y is less than or equal to

x >= y is greater than or equal to

Logical operators

True False

False False

True

False

True Falseand

conjunction

False

True

True

False

not

negation

True True

True False

True

False

True Falseor

disjunction

Logical operators

operator name meaning

and conjunction gives True if both conditions are true, False otherwise

or disjunction gives False if both conditions are false, True otherwise

not negation converts False into True, and True into False

Logical operators

>>> age = 12

>>> if age >= 6 and age <= 18:

... print('You have to go to school!!')

...

You have to go to school!!

operator name meaning

and conjunction gives True if both conditions are true, False otherwise

or disjunction gives False if both conditions are false, True otherwise

not negation converts False into True, and True into False

Logical operators

>>> age = 12

>>> if 6 <= age <= 18:

... print('You have to go to school!!')

...

You have to go to school!!

operator name meaning

and conjunction gives True if both conditions are true, False otherwise

or disjunction gives False if both conditions are false, True otherwise

not negation converts False into True, and True into False

Logical operators

>>> today = 'saturday'

>>> if today == 'saturday' or today == 'sunday':

... print('It is weekend!!')

...

It is weekend!!

operator name meaning

and conjunction gives True if both conditions are true, False otherwise

or disjunction gives False if both conditions are false, True otherwise

not negation converts False into True, and True into False

Logical operators

>>> today = 'saturday'

>>> if today in ['saturday', 'sunday']:

... print('It is weekend!!')

...

It is weekend!!

operator name meaning

and conjunction gives True if both conditions are true, False otherwise

or disjunction gives False if both conditions are false, True otherwise

not negation converts False into True, and True into False

Logical operators

>>> today = 'tuesday'

>>> if not(today == 'saturday' or today == 'sunday'):

... print('Today we have lectures!!')

...

Today we have lectures!!

operator name meaning

and conjunction gives True if both conditions are true, False otherwise

or disjunction gives False if both conditions are false, True otherwise

not negation converts False into True, and True into False

Logical operators

>>> today = 'tuesday'

>>> if today != 'saturday' and today != 'sunday':

... print('Today we have lectures!!')

...

Today we have lectures!!

operator name meaning

and conjunction gives True if both conditions are true, False otherwise

or disjunction gives False if both conditions are false, True otherwise

not negation converts False into True, and True into False

Logical operators

>>> today = 'tuesday'

>>> if today not in ['saturday', 'sunday']:

... print('Today we have lectures!!')

...

Today we have lectures!!

operator name meaning

and conjunction gives True if both conditions are true, False otherwise

or disjunction gives False if both conditions are false, True otherwise

not negation converts False into True, and True into False

Logical operators

>>> today = 'tuesday'

>>> if not today in ['saturday', 'sunday']:

... print('Today we have lectures!!')

...

Today we have lectures!!

operator name meaning

and conjunction gives True if both conditions are true, False otherwise

or disjunction gives False if both conditions are false, True otherwise

not negation converts False into True, and True into False

Alternative execution

condition

statements1

statements3

True

statements2

False

if boolean expression:

statements1

else:

statements2

syntax

Alternative execution

if boolean expression:statements1else:statements2

if boolean expression:

statements1

else:

statements2

syntax

>>> x = 4

>>> if x % 2 != 0:

... print(f'{x} is odd')

... else:

... print(f'{x} is even')

...

4 is even

../les03/les3.doc

Alternative execution

if boolean expression:

statements1

else:

statements2

syntax

>>> x = 4

>>> if x % 2:

... print(f'{x} is odd')

... else:

... print(f'{x} is even')

...

4 is even

Alternative execution

determine smallest of two given integer

x = float(input('Enter an integer: '))

y = float(input('Enter another integer: '))

if x < y:

 smallest = x

else:

 smallest = y

print(f'The smallest integer is {smallest}')

condition

statements1

statements3

True

statements2

False

$ python3 smallest.py

Enter an integer: 3.12

Enter another integer: 7.83

The smallest integer is 3.12

sm
al

le
st

.p
y

What would happen
if x and y are equal ?

Chained conditionals

condition1

statements1

True False

statements4

statements

statementsstatements

Chained conditionals

condition1

statements1

True False

statements4

condition2
True False

statements4

statements3statements2

statements

condition1

statements1

True False

condition2

statements2

statements4

True

statements3

False

Chained conditionals

lamp does
not shine

plug lamp
in outlet

replace
bulb

buy new
lamp

bulb burned
out ?

lamp in
outlet ?

no

yes

no

yes

Chained conditionals

condition1

statements1

True False

condition2

statements2

statements4

True

statements3

False

if boolean expression:

statements

[elif boolean expression:

statements]

[elif boolean expression:

statements]

[else:

statements]

syntax

Chained conditionals

Chained conditionals

>>> x = 3; y = 4

>>> if x < y:

... print(f'{x} is less than {y}')

... elif x > y:

... print(f'{x} is greater than {y}')

... else:

... print(f'{x} and {y} are equal')

...

3 is less than 4

BMI

https://dodona.be/en/exercises/1228419728/

BMI

get personal data

weight = int(input('Enter your weight in kilogram: '))

length = int(input('Enter your length in centimeter: '))

compute BMI

BMI = weight / (length / 100) ** 2 # float division (2x)

interpret BMI

if BMI < 18:

interpretation = 'underweight'

elif BMI < 25:

interpretation = 'normal range'

elif BMI < 27:

interpretation = 'overweight'

elif BMI < 30:

interpretation = 'moderate obese'

elif BMI < 40:

interpretation = 'severe obese'

else:

interpretation = 'very severe obese'

output interpretationweight

print(f'A person weighing {weight} kg an measuring {length} cm ' +

'has {interpretation}.')

B
M

I.
p

y http://www.mathworks.com/matlabcentral/fx_files/27297/1/video.jpg

video

http://www.youtube.com/watch?v=RkZsQOUwAP8
http://www.youtube.com/watch?v=RkZsQOUwAP8

Nested conditionals

>>> x = 3; y = 4

>>> if x == y:

... print(f'{x} and {y} are equal')

... else:

... if x < y:

... print(f'{x} is less than {y}')

... else:

... print(f'{x} is greater than {y}')

...

3 is less than 4

condition1

statements1

True False

condition2

statements2

statements4

True

statements3

False

Nested conditionals

>>> x = 3; y = 4

>>> if x == y:

... print(f'{x} and {y} are equal')

... else:

... if x < y:

... print(f'{x} is less than {y}')

... else:

... print(f'{x} is greater than {y}')

...

3 is less than 4

• indentation of statements makes structure apparent

➢ nested conditionals become difficult to read very quickly

➢ in general, it is a good idea to avoid them when you can

Nested conditionals

if 0 <= x:

if x < 10:

print(f'{x} is a positive single digit.')

• indentation of statements makes structure apparent

➢ nested conditionals become difficult to read very quickly

➢ in general, it is a good idea to avoid them when you can

▪ logical operators often provide a way to simplify nested

conditional statements

Nested conditionals

if 0 <= x and x < 10:

print(f'{x} is a positive single digit.')

• indentation of statements makes structure apparent

➢ nested conditionals become difficult to read very quickly

➢ in general, it is a good idea to avoid them when you can

▪ logical operators often provide a way to simplify nested

conditional statements

Nested conditionals

if 0 <= x < 10:

print(f'{x} is a positive single digit.')

• indentation of statements makes structure apparent

➢ nested conditionals become difficult to read very quickly

➢ in general, it is a good idea to avoid them when you can

▪ logical operators often provide a way to simplify nested

conditional statements

if condition1: # start of first if

if condition2: # start of second if

if condition3: # start of third if

statements1

elif condition4: # elif with third if

statements2

else: # else with third if

statements3

 # end of third if

else: # else with second if

if condition5: # start of fourth if

statements4

 # end of fourth if

 # end of second if

else: # else with first if

statements5

 # end of first if

Python syntax rules

spaghetti
code

if condition1: # start of first if

 if condition2: # start of second if

 if condition3: # start of third if

 condition1

 elif condition4: # elif with third if

 statements2

 else: # else with third if

 statements3

 # end of third if

 else: # else with second if

 if condition5: # start of fourth if

 statements4

 # end of fourth if

 # end of second if

else: # else with first if

 statements5

 # end of first if

Python syntax rules

Python style guide

style rule

Python Style Guide (PEP8) recommends 4 spaces
per indentation level, and definitely not tabs

http://www.python.org/dev/peps/pep-0008/

Python syntax rules

if condition1: # start of first if

 if condition2: # start of second if

 if condition3: # start of third if

 condition1

 elif condition4: # elif with third if

 statements2

 else: # else with third if

 statements3

 # end of third if

 else: # else with second if

 if condition5: # start of fourth if

 statements4

 # end of fourth if

 # end of second if

else: # else with first if

 statements5

 # end of first if

Python syntax rules

if condition1: # start of first if

 if condition2: # start of second if

 if condition3: # start of third if

 statements1

 elif condition4: # elif with third if

 statements2

 else: # else with third if

 statements3

 else: # else with second if

 if condition5: # start of fourth if

 statements4

else: # else with first if

 statements5

Babysitter

programming exercise

A babysitter charges €2 per hour between 18:00 and 21:30,
and €4 per hour between 21:30 en midnight. She does not

want to babysit before 18:00 nor after midnight.

https://dodona.be/en/exercises/1797346540/

Babysitter

18:00 24:0021:30t1 t2

scenario 1
h1 h2

h1 h2
scenario 3

h1 h2
scenario 2

h1 h2
invalid input

Babysitter

read start and stop times

h1 = int(input())

m1 = int(input())

h2 = int(input())

m2 = int(input())

convert times into hours since midnight

h1 = h1 + m1 / 60 # caution: floating point division

h2 = h2 + m2 / 60

h1800 = 18.0 # 18:00 in hours since midnight

h2130 = 21.5 # 21:30 in hours since midnight

if h1 < h1800 or h2 < h1:

 print('invalid input')

else:

 # compute babysit hours before (t1) and after (t2) 21:30

 if h2 < h2130: # scenario 1

 t1 = h2 - h1

 t2 = 0.0

 elif u1 < h2130: # scenario 2

 t1 = h2130 - h1

 t2 = h2 - h2130

 else: # scenario 3

 t2 = h2 - h1

 t1 = 0.0

 # compute total amount earned

 print(2 * t1 + 4 * t2)

b
ab

ys
it

1
.p

y
http://www.mathworks.com/matlabcentral/fx_files/27297/1/video.jpg

video

http://www.youtube.com/watch?v=zavcw-8Jc4E
http://www.youtube.com/watch?v=zavcw-8Jc4E

Babysitter

read start and stop times

h1 = int(input())

m1 = int(input())

h2 = int(input())

m2 = int(input())

convert times into hours since midnight

h1 = h1 + m1 / 60 # caution: floating point division

h2 = h2 + m2 / 60

h1800 = 18.0 # 18:00 in hours since midnight

h2130 = 21.5 # 21:30 in hours since midnight

if h1 < h1800 or h2 < h1:

 print('invalid input')

else:

 # compute babysit hours before (t1) and after (t2) 21:30

 t1 = max(0, min(h2130, h2) - h1)

t2 = max(0, h2 - max(u2130, h1))

 # compute total amount earned

 print(2 * t1 + 4 * t2)

b
ab

ys
it

2
.p

y
http://www.mathworks.com/matlabcentral/fx_files/27297/1/video.jpg

video

http://www.youtube.com/watch?v=zavcw-8Jc4E
http://www.youtube.com/watch?v=zavcw-8Jc4E

Collision detection

programming exercise

Determine whether or not
two rectangles overlap.

https://dodona.be/en/exercises/1301141031/

Collision detection

no collision

collision

Collision detection

(ax, ay)

(bx, by)

(cx, cy)

(dx, dy)

ax, bx = min(ax, bx), max(ax, bx)

Collision detection

(ax, ay)

(bx, by)

(cx, cy)

(dx, dy)

ax, bx = min(ax, bx), max(ax, bx)

(ax, ay)

(bx, by)

Collision detection

ax bx

When does this segment overlap with segment cx,dx ?

cx

dx

cx dx

ax < cx < bx

ax < dx < bx

cx <= ax < bx <= dx

or

or

Collision detection

ax bx

When doesn't this segment overlap with segment cx,dx ?

cx dx

ax >= dx

cx >= bx

not(ax >= dx or cx >= bx)

or

cx dx

ax < dx and cx < bx

Collision

read two diametral points of two rectangles

ax, ay = int(input()), int(input())

bx, by = int(input()), int(input())

cx, cy = int(input()), int(input())

dx, dy = int(input()), int(input())

assure diametral points are bottom left and top right

ax, bx = min(ax, bx), max(ax, bx)

ay, by = min(ay, by), max(ay, by)

cx, dx = min(cx, dx), max(cx, dx)

cy, dy = min(cy, dy), max(cy, dy)

check if rectangles overlap horizontally and vertically

horizontal = ax < dx and cx < bx

vertical = ay < dy and cy < by

check if both rectangles overlap

if horizontal and vertical:

print('collision')

else:

print('no collision')

b
o

ts
in

g.
p

y

Collision

read two diametral points of two rectangles

ax, ay = int(input()), int(input())

bx, by = int(input()), int(input())

cx, cy = int(input()), int(input())

dx, dy = int(input()), int(input())

assure diametral points are bottom left and top right

ax, bx = min(ax, bx), max(ax, bx)

ay, by = min(ay, by), max(ay, by)

cx, dx = min(cx, dx), max(cx, dx)

cy, dy = min(cy, dy), max(cy, dy)

check if rectangles overlap horizontally and vertically

horizontal = ax < dx and cx < bx

vertical = ay < dy and cy < by

check if both rectangles overlap

print('collision' if horizontal and vertical else 'no collision')

b
o

ts
in

g.
p

y

Homework (next lecture)

• course book: read chapters 2 and 3

➢ chapter 2 (control loops)

➢ chapter 3 (putting it all together)

• read problem description of demo exercises

➢ Collatz conjecture

➢ Birthday paradox

https://dodona.be/en/exercises/454607489/
https://dodona.be/en/exercises/1713485389/

Homework (hands-on sessions)

• solve mandatory exercises of series 02

(deadline Tuesday, October 7, 2025, 22:00)

➢ ISBN (demo, video)

➢ Reynolds number

➢ Rock-paper-scissors

➢ Seasons

➢ Trilateration

➢ Darts

http://www.mathworks.com/matlabcentral/fx_files/27297/1/video.jpg

video

https://dodona.be/en/courses/5090/series/58573/activities/182880102/
https://dodona.be/en/courses/5090/series/58573/activities/387716745/
https://dodona.be/en/courses/5090/series/58573/activities/412723997/
https://dodona.be/en/courses/5090/series/58573/activities/1800551125/
https://dodona.be/en/courses/5090/series/58573/activities/325610135/
https://dodona.be/en/courses/5090/series/58573/activities/960794524/
https://youtu.be/8MWPlpaVnjs
https://youtu.be/8MWPlpaVnjs

Questions or remarks ?

The sky is the limit …

"What I hear I forget.
What I see I remember.

What I do I understand."

⎯ Confucius

Confucius

551-479BC

	Dia 1
	Dia 2: Python Programming
	Dia 3
	Dia 4
	Dia 5: Control structures
	Dia 6: Control structures
	Dia 7: Control structures
	Dia 8: Control structures
	Dia 9: Conditional execution
	Dia 10: Pass statement
	Dia 11: Pass statement
	Dia 12: Modulo operator
	Dia 13: Modulus operator
	Dia 14: Boolean values
	Dia 15: Boolean expressions
	Dia 16: Comparison operators
	Dia 17: Logical operators
	Dia 18
	Dia 19: Logical operators
	Dia 20: Logical operators
	Dia 21: Logical operators
	Dia 22: Logical operators
	Dia 23: Logical operators
	Dia 24: Logical operators
	Dia 25: Logical operators
	Dia 26: Logical operators
	Dia 27: Logical operators
	Dia 28: Alternative execution
	Dia 29: Alternative execution
	Dia 30: Alternative execution
	Dia 31: Alternative execution
	Dia 32: Chained conditionals
	Dia 33: Chained conditionals
	Dia 34: Chained conditionals
	Dia 35: Chained conditionals
	Dia 36: Chained conditionals
	Dia 37: Chained conditionals
	Dia 38: BMI
	Dia 39: BMI
	Dia 40: Nested conditionals
	Dia 41: Nested conditionals
	Dia 42: Nested conditionals
	Dia 43: Nested conditionals
	Dia 44: Nested conditionals
	Dia 45: Python syntax rules
	Dia 46: Python syntax rules
	Dia 47: Python style guide
	Dia 48: Python syntax rules
	Dia 49: Python syntax rules
	Dia 50: Babysitter
	Dia 51: Babysitter
	Dia 52: Babysitter
	Dia 53: Babysitter
	Dia 54: Collision detection
	Dia 55: Collision detection
	Dia 56: Collision detection
	Dia 57: Collision detection
	Dia 58: Collision detection
	Dia 59: Collision detection
	Dia 60: Collision
	Dia 61: Collision
	Dia 62: Homework (next lecture)
	Dia 63: Homework (hands-on sessions)
	Dia 64: Questions or remarks ?
	Dia 65: The sky is the limit …

