
Ghent University
Faculty of Sciences

Prof. Dr. Peter Dawyndt

peter.dawyndt@ugent.be

@dawyndt

Python
Programming

great Python
your appetite

is hard to swallow

le
ct

u
re

s
week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12

re
ad

in
g

m
at

er
ia

l
h

an
d

s-
o

n
 s

es
si

o
n

extra
week

co
u

rs
e

b
o

o
k

C
H

9

co
u

rs
e

b
o

o
k

C
H

5

co
u

rs
e

b
o

o
k

C
H

0

co
u

rs
e

b
o

o
k

C
H

2

co
u

rs
e

b
o

o
k

C
H

3

co
u

rs
e

b
o

o
k

C
H

4

co
u

rs
e

b
o

o
k

C
H

6

co
u

rs
e

b
o

o
k

C
H

8

co
u

rs
e

b
o

o
k

C
H

1
1

co
u

rs
e

b
o

o
k

C
H

1
2

co
u

rs
e

b
o

o
k

C
H

1
3

co
u

rs
e

b
o

o
k

C
H

1

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

9

co
u

rs
e

b
o

o
k

C
H

1
0

co
u

rs
e

b
o

o
k

C
H

1
4

co
n

d
it

io
n

al
s

lo
o

p
s

p
u

tt
in

g
it

al
l

to
ge

th
er

fu
n

ct
io

n
s

lis
ts

an
d

 t
u

p
le

s

lis
ts

an
d

 t
u

p
le

s

ad
va

n
ce

d
fu

n
ct

io
n

s

lis
t

co
m

p
re

h
en

si
o

n
s

an
d

 m
o

d
u

le
s

se
ts

 a
n

d

d
ic

ti
o

n
ar

ie
s

te
xt

fi
le

s

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

st
ri

n
gs

b
as

ic
 p

ro
gr

am
m

in
g

p
ri

n
ci

p
le

s

ex
p

re
ss

io
n

s
an

d

st
at

em
en

ts

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

lis
ts

an
d

 t
u

p
le

s

ad
va

n
ce

d
fu

n
ct

io
n

s
an

d
 m

o
d

u
le

s

ev
al

u
at

io
n

ex
p

re
ss

io
n

s
an

d

st
at

em
en

ts

co
n

d
it

io
n

al
s

lo
o

p
s

st
ri

n
gs

fu
n

ct
io

n
s

ev
al

u
at

io
n

se
ts

 a
n

d

d
ic

ti
o

n
ar

ie
s

te
xt

fi
le

s

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

fu
n

ct
iio

s
lis

ts
an

d
tu

p
le

s

Input and output

• up until now …

➢ display what programs are doing:

➢ request information from users:

• Python's solution looks very much like C's

➢ a file is a sequence of bytes

➢ but it is often more useful to treat

text files as a sequence of lines

print() function

input() function

Input and output

“How can I save my data into a file ?”

“How can I read data from a file ?”

Read from files
h

ai
ku

.t
xt

Three things are certain:

Death, taxes and lost data.

Guess which has occurred.

You step in the stream,

but the water has moved on.

This page is not here.

Having been erased,

The document you're seeking

Must now be retyped.

A crash reduces

your expensive computer

to a simple stone.

source: Error messages in Haiku? (GNU humor collection)

• how many characters are in this file ?

bytes

assume for now:

1 character = 1 byte

http://www.gnu.org/fun/jokes/error-haiku.html
http://www.gnu.org/fun/jokes/error-haiku.html
http://www.gnu.org/fun/jokes/error-haiku.html

Read from files

• how many characters are in this file ?

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read()

>>> reader.close()

>>> len(data)

286

Read from files

• how many characters are in this file ?

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read()

>>> reader.close()

>>> len(data)

286

create a file object

Read from files

• how many characters are in this file ?

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read()

>>> reader.close()

>>> len(data)

286

location of the file to
connect to

Read from files

• how many characters are in this file ?

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read()

>>> reader.close()

>>> len(data)

286 for reading …

Read from files

• how many characters are in this file ?

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read()

>>> reader.close()

>>> len(data)

286

now refers to
the file object

Read from files

• how many characters are in this file ?

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read()

>>> reader.close()

>>> len(data)

286

reads entire content
of file into a string

Read from files

• how many characters are in this file ?

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read()

>>> reader.close()

>>> len(data)

286

>>> print(data)

Three things are certain:

Death, taxes and lost data.

Guess which has occurred.

...

now has a copy of all the
bytes that were in the file

Read from files

• how many characters are in this file ?

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read()

>>> reader.close()

>>> len(data)

286

>>> print(data)

Three things are certain:

Death, taxes and lost data.

Guess which has occurred.

...

disconnect object
from the file

Read from files

• how many characters are in this file ?

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read()

>>> reader.close()

>>> len(data)

286

>>> print(data)

Three things are certain:

Death, taxes and lost data.

Guess which has occurred.

...

report how many
characters were readbytes

Read from files

• how many characters are in this file ?

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read()

>>> reader.close()

>>> len(data)

286

>>> print(data)

Three things are certain:

Death, taxes and lost data.

Guess which has occurred.

...

Read all at once …

namespace objects (memory)

reader

file

>>> reader = open('haiku.txt', 'r')

file system

haiku.txt

Read all at once …

namespace objects (memory)

reader

file

>>> data = reader.read()

file system

data

str

haiku.txt

Read all at once …

namespace objects (memory)

reader

file

file system

data

str

>>> reader.close()

haiku.txt

… or in chunks …

namespace objects (memory)

reader

file

file system

data

str

• if file grows large, it is better to read in chunks

str

haiku.txt

… or in chunks …

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read(64)

>>> while data:

... print(len(data))

... data = reader.read(64)

• if file grows large, it is better to read in chunks

… or in chunks …

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read(64)

>>> while data:

... print(len(data))

... data = reader.read(64)

• if file grows large, it is better to read in chunks

read (at most)
64 bytes

empty string if
data exhausted

… or in chunks …

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read(64)

>>> while data:

... print(len(data))

... data = reader.read(64)

• if file grows large, it is better to read in chunks

repeat as long
as something is
read from file

… or in chunks …

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read(64)

>>> while data:

... print(len(data))

... data = reader.read(64)

64

• if file grows large, it is better to read in chunks

do something
with the data

… or in chunks …

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read(64)

>>> while data:

... print(len(data))

... data = reader.read(64)

64

64

64

64

30

• if file grows large, it is better to read in chunks

try to read the
next chunk of data

… or in chunks …

>>> reader = open('haiku.txt', 'r')

>>> data = reader.read(64)

>>> while data:

... print(len(data))

... data = reader.read(64)

64

64

64

64

30

>>> len(data)

0

>>> reader.close()

• if file grows large, it is better to read in chunks

quite unusual scenario
when working with

text files

… or line by line

• it is more common to read text files one line at a time
re

ad
er

3
.p

y

reader = open('haiku.txt', 'r')

bytes, lines = 0, 0

line = reader.readline()

while line:

lines += 1

bytes += len(line)

line = reader.readline()

reader.close()

print(f'average: {bytes / lines}')

… or line by line

• it is more common to read text files one line at a time
re

ad
er

3
.p

y

reader = open('haiku.txt', 'r')

bytes, lines = 0, 0

line = reader.readline()

while line:

lines += 1

bytes += len(line)

line = reader.readline()

reader.close()

print(f'average: {bytes / lines}')

read a
single line

… or line by line

• it is more common to read text files one line at a time
re

ad
er

3
.p

y

reader = open('haiku.txt', 'r')

bytes, lines = 0, 0

line = reader.readline()

while line:

lines += 1

bytes += len(line)

line = reader.readline()

reader.close()

print(f'average: {bytes / lines}')

repeat as long as
lines are read

… or line by line

• it is more common to read text files one line at a time
re

ad
er

3
.p

y

reader = open('haiku.txt', 'r')

bytes, lines = 0, 0

line = reader.readline()

while line:

lines += 1

bytes += len(line)

line = reader.readline()

reader.close()

print(f'average: {bytes / lines}')

(try to) read
next line

… or line by line

• it is more common to read text files one line at a time
re

ad
er

3
.p

y

reader = open('haiku.txt', 'r')

bytes, lines = 0, 0

line = reader.readline()

while line:

lines += 1

bytes += len(line)

line = reader.readline()

reader.close()

print(f'average: {bytes / lines}')

average: 19.066667

… or line by line

• it is more common to read text files one line at a time
re

ad
er

3
.p

y

reader = open('haiku.txt', 'r')

bytes, lines = 0, 0

line = reader.readline()

while line:

lines += 1

bytes += len(line)

line = reader.readline()

reader.close()

print(f'average: {bytes / lines}')

average: 19.066667

List of lines

• often more convenient to read all lines at once

➢ if memory footprint is not an issue

re
ad

er
4

.p
y

reader = open('haiku.txt', 'r')

content = reader.readlines()

reader.close()

bytes, lines = 0, 0

for line in content:

lines += 1

bytes += len(line)

print(f'average: {bytes / lines}')

List of lines

• often more convenient to read all lines at once

➢ if memory footprint is not an issue

re
ad

er
4

.p
y

reader = open('haiku.txt', 'r')

content = reader.readlines()

reader.close()

bytes, lines = 0, 0

for line in content:

lines += 1

bytes += len(line)

print(f'average: {bytes / lines}')

all lines in file
as list of strings

List of lines

• often more convenient to read all lines at once

➢ if memory footprint is not an issue

re
ad

er
4

.p
y

reader = open('haiku.txt', 'r')

content = reader.readlines()

reader.close()

bytes, lines = 0, 0

for line in content:

lines += 1

bytes += len(line)

print(f'average: {bytes / lines}')

loop over lines
with for loop

List of lines

• often more convenient to read all lines at once

➢ if memory footprint is not an issue

re
ad

er
4

.p
y

reader = open('haiku.txt', 'r')

content = reader.readlines()

reader.close()

bytes, lines = 0, 0

for line in content:

lines += 1

bytes += len(line)

print(f'average: {bytes / lines}')

average: 19.066667

List of lines
re

ad
er

4
.p

y

reader = open('haiku.txt', 'r')

content = reader.readlines()

reader.close()

bytes, lines = 0, 0

for line in content:

lines += 1

bytes += len(line)

print(f'average: {bytes / lines}')

average: 19.066667

• often more convenient to read all lines at once

➢ if memory footprint is not an issue

➢ common idiom: "read lines as list" + "loop over list"

➢ short Python syntax: "loop over lines in file"

▪ file object is an iterable object

Iterate files

reader = open('haiku.txt', 'r')

bytes, lines = 0, 0

for line in reader:

lines += 1

bytes += len(line)

reader.close()

print(f'average: {bytes / lines}')

• often more convenient to read all lines at once

➢ if memory footprint is not an issue

➢ common idiom: "read lines as list" + "loop over list"

➢ short Python syntax: "loop over lines in file"

▪ file object is an iterable object

re
ad

er
5

.p
y

Iterate files

reader = open('haiku.txt', 'r')

bytes, lines = 0, 0

for line in reader:

lines += 1

bytes += len(line)

reader.close()

print(f'average: {bytes / lines}')

• often more convenient to read all lines at once

➢ if memory footprint is not an issue

➢ common idiom: "read lines as list" + "loop over list"

➢ short Python syntax: "loop over lines in file"

▪ file object is an iterable object

re
ad

er
5

.p
y

assign lines of text
in file to the loop

variable one by one

Iterate files

reader = open('haiku.txt', 'r')

bytes, lines = 0, 0

for line in reader:

lines += 1

bytes += len(line)

reader.close()

print(f'average: {bytes / lines}')

• often more convenient to read all lines at once

➢ if memory footprint is not an issue

➢ common idiom: "read lines as list" + "loop over list"

➢ short Python syntax: "loop over lines in file"

➢ "open" file objects are automatically closed "at the end"

re
ad

er
5

.p
y

Iterate files

bytes, lines = 0, 0

for line in open('haiku.txt', 'r'):

lines += 1

bytes += len(line)

print(f'average: {bytes / lines}')

• often more convenient to read all lines at once

➢ if memory footprint is not an issue

➢ common idiom: "read lines as list" + "loop over list"

➢ short Python syntax: "loop over lines in file"

➢ "open" file objects are automatically closed "at the end"

re
ad

er
6

.p
y

Iterate files

bytes, lines = 0, 0

with open('haiku.txt', 'r') as reader:

for line in reader:

lines += 1

bytes += len(line)

print(f'average: {bytes / lines}')

• often more convenient to read all lines at once

➢ if memory footprint is not an issue

➢ common idiom: "read lines as list" + "loop over list"

➢ short Python syntax: "loop over lines in file"

➢ "open" file objects are automatically closed "at the end"

➢ with-block makes the "end" explicit (= close file)

re
ad

er
7

.p
y

Iterate files

bytes, lines = 0, 0

with open('haiku.txt', encoding='utf-8') as reader:

for line in reader:

lines += 1

bytes += len(line)

print(f'average: {bytes / lines}')

• often more convenient to read all lines at once

➢ if memory footprint is not an issue

➢ common idiom: "read lines as list" + "loop over list"

➢ short Python syntax: "loop over lines in file"

➢ "open" file objects are automatically closed "at the end"

➢ with-block makes the "end" explicit (= close file)

➢ encoding cares about converting bytes into characters

re
ad

er
8

.p
y

Guaranteed file closure

reader = open('haiku.txt', 'r')

try:

bytes, lines = 0, 0

for line in reader:

lines += 1

bytes += len(line)

print(f'average: {bytes / lines}')

finally:

reader.close()

• open file → don't forget to close file
re

ad
er

9
.p

y

Guaranteed file closure

with open('haiku.txt', 'r') as reader:

bytes, lines = 0, 0

for line in reader:

lines += 1

bytes += len(line)

print(f'average: {bytes / lines}')

• open file → don't forget to close file

➢ with: resource management + exception handling

re
ad

er
1

0
.p

y

The End of Line Puzzle

The End of Line Puzzle

The End of Line Puzzle

• UNIX and MS Windows use different conventions
to represent the end of line in text files
➢ UNIX: line feed ('\n', newline, code 10)

➢ MS Windows: carriage return ('\r', code 13) + line feed

Back in the dark ages BC (Before Computers), there existed
a magical device called a Teletype Model 33. This amazing
machine contained a shift register made out of a motor
and a rotor as well as a keyboard ROM consisting solely of
levers and springs. It contained a keyboard, a printer and a
paper tape reader/punch. It could transmit messages over
the phones using a modem at the blazing rate of 10
characters a second.

The Teletype had a problem. It took 2/10 second to move
the printhead from the right side to the left. 2/10 second is
two character times. If a second character came while the
printhead was in the middle of a return, it was lost. The
Teletype people solved this problem by making end of line
two characters: <carriage return> to position the printhead
at the left margin, and <line feed> to move the paper up
one line. That way the <line feed> "printed" while the
printhead was racing back to the left margin.

When the early computers came out, some designers
realized that using two characters for end of line wasted
storage (at this time storage was very expensive). Some
picked <line feed> for their end of line, some <carriage
return>. Some of the die hards stayed with the two-
character sequence. UNIX uses <line feed> for end of line.
The newline character '\n' is code 0xA (LF or <line feed>).
MS-DOS/Windows uses the two characters: <line
feed><carriage return>. Compiler designers had a problem;
what to do about the old C programs which thought that
newline was just <line feed>? The solution was to add code
to the I/O library that stripped out the <carriage return>
characters from ASCII input files and changed <line feed>
to <line feed> <carriage return> on output.

The End of Line Puzzle

Write to files

Write to files

• file objects can write data to files using their

➢ write() method

➢ writelines() method

>>> writer = open('elements.txt', 'w')

>>> writer.write('elements')

>>> writer.writelines(['He', 'Ne', 'Ar', 'Kr'])

>>> writer.close()

Write to files

• file objects can write data to files using their

➢ write() method

➢ writelines() method

>>> writer = open('elements.txt', 'w')

>>> writer.write('elements')

>>> writer.writelines(['He', 'Ne', 'Ar', 'Kr'])

>>> writer.close()

same function

newly created if
file did not exist

Write to files

• file objects can write data to files using their

➢ write() method

➢ writelines() method

>>> writer = open('elements.txt', 'w')

>>> writer.write('elements')

>>> writer.writelines(['He', 'Ne', 'Ar', 'Kr'])

>>> writer.close()

file to write to
existing content

will be overwritten

Write to files

• file objects can write data to files using their

➢ write() method

➢ writelines() method

>>> writer = open('elements.txt', 'w')

>>> writer.write('elements')

>>> writer.writelines(['He', 'Ne', 'Ar', 'Kr'])

>>> writer.close()

for writing …

Write to files

• file objects can write data to files using their

➢ write() method

➢ writelines() method

>>> writer = open('elements.txt', 'w')

>>> writer.write('elements')

>>> writer.writelines(['He', 'Ne', 'Ar', 'Kr'])

>>> writer.close()

write a
single string

Write to files

• file objects can write data to files using their

➢ write() method

➢ writelines() method

>>> writer = open('elements.txt', 'w')

>>> writer.write('elements')

>>> writer.writelines(['He', 'Ne', 'Ar', 'Kr'])

>>> writer.close()

write each string
in the list

Write to files

• file objects can write data to files

➢ Python only writes what we tell it to

▪ end-of-line characters must be written explicitely: '\n'

▪ and we did not tell it to write any end-of-line characters

>>> writer = open('elements.txt', 'w')

>>> writer.write('elements')

>>> writer.writelines(['He', 'Ne', 'Ar', 'Kr'])

>>> writer.close()

elementsHeNeArKr

elements.txt

Write to files

• file objects can write data to files

➢ Python only writes what we tell it to

▪ end-of-line characters must be written explicitely: '\n'

>>> writer = open('elements.txt', 'w')

>>> writer.write('elements\n')

>>> writer.writelines(['He\n','Ne\n','Ar\n','Kr\n'])

>>> writer.close()

elements

He

Ne

Ar

Kr

elements.txt

‘elements\nHe\nNe\nAr\nKr\n’

Write to files

• file objects can write data to files

➢ Python only writes what we tell it to

▪ end-of-line characters must be written explicitely: '\n'

▪ often easier to use file parameter of print function

writer = open('elements.txt', 'w')

print('elements', file=writer)

for gas in ['He', 'Ne', 'Ar', 'Kr']:

print(gas, file=writer)

writer.close()

w
ri

te
r3

.p
y

Write to files

• file objects can write data to files

➢ Python only writes what we tell it to

▪ end-of-line characters must be written explicitely: '\n'

▪ often easier to use file parameter of print function

writer = open('elements.txt', 'w')

print('elements', file=writer)

for gas in ['He', 'Ne', 'Ar', 'Kr']:

print(gas, file=writer)

writer.close()

w
ri

te
r3

.p
y

pass opened file object
to file parameter

print automatically
appends a newline

Write to files

• file objects can write data to files

➢ Python only writes what we tell it to

▪ end-of-line characters must be written explicitely: '\n'

▪ often easier to use file parameter of print function

writer = open('elements.txt', 'w')

print('elements', file=writer)

for gas in ['He', 'Ne', 'Ar', 'Kr']:

print(gas, file=writer)

writer.close()

w
ri

te
r3

.p
y

Copy files

Copy files

reader = open('haiku.txt', 'r')

data = reader.read()

reader.close()

writer = open('copy.txt', 'w')

writer.write(data)

writer.close()

co
p

y1
.p

y

Copy files
namespace objects (memory)

reader

file

file system

data

str

haiku.txt

reader = open('haiku.txt', 'r')

data = reader.read()

reader.close()

writer = open('copy.txt', 'w')

writer.write(data)

writer.close()

co
p

y1
.p

y

read entire
file in memory

Copy files
namespace objects (memory)

reader

file

file system

data

str

haiku.txt

writer

file

copy.txt

reader = open('haiku.txt', 'r')

data = reader.read()

reader.close()

writer = open('copy.txt', 'w')

writer.write(data)

writer.close()

co
p

y1
.p

y

dump memory
buffer to file

Copy files
namespace objects (memory)

reader

file

file system

data

str

haiku.txt

writer

file

copy.txt

reader = open('haiku.txt', 'r')

data = reader.read()

reader.close()

writer = open('copy.txt', 'w')

writer.write(data)

writer.close()

co
p

y1
.p

y

terabyte
files

Copy files

reader = open('haiku.txt', 'r')

writer = open('copy.txt', 'w')

for line in reader:

writer.write(line)

reader.close()

writer.close()

co
p

y2
.p

y

• this version will work terabyte-sized files

➢ if it's a terabyte of text

binary
files

Copy files

reader = open('haiku.txt', 'r')

writer = open('copy.txt', 'w')

for line in reader:

print(line, file=writer)

reader.close()

writer.close()

co
p

y3
.p

y

• this version doesn't make an exact copy of the original file

➢ Python keeps newline characters when reading input

➢ print automatically adds a newline when writing output

double-spaced

output lines

Copy files

reader = open('haiku.txt', 'r')

writer = open('copy.txt', 'w')

for line in reader:

print(line.rstrip(), file=writer)

reader.close()

writer.close()

co
p

y3
.p

y

• this version doesn't make an exact copy of the original file

➢ Python keeps newline characters when reading input

▪ possible solution: string method rstrip()

➢ print automatically adds a newline when writing output

Copy files

reader = open('haiku.txt', 'r')

writer = open('copy.txt', 'w')

for line in reader:

print(line, file=writer, end='')

reader.close()

writer.close()

co
p

y3
.p

y

• this version doesn't make an exact copy of the original file

➢ Python keeps newline characters when reading input

▪ possible solution: string method rstrip()

➢ print automatically adds a newline when writing output

▪ possible solution: parameter end of print function

Copy files

blocksize = 1024

reader = open('haiku.txt', 'r')

writer = open('copy.txt', 'w')

data = reader.read(blocksize)

while data:

writer.write(data)

data = reader.read(blocksize)

reader.close()

writer.close()

co
p

y4
.p

y

• this version works for

➢ files of any size

➢ binary files and text files

Copy files

blocksize = 1024

with open('haiku.txt', 'r’) as reader:

with open('copy.txt', 'w') as writer:

data = reader.read(blocksize)

while data:

writer.write(data)

data = reader.read(blocksize)

co
p

y5
.p

y

• this version works for

➢ files of any size

➢ binary files and text files

Online files

• direct input from remote files is possible

• only difference with local files: opening files

➢ URL (uniform resource locator) instead of path name

➢ function urlopen() in module urllib.request , not open()

➢ decoding bytes to characters (character set encoding)

Online files

from urllib.request import urlopen

download web page

url = 'http://www.ebi.ac.uk/ena/data/view/{}&display=fasta'

accession = 'JN698960'

fasta = urlopen(url.format(accession))

display content of web page

for line in fasta:

print(line.decode('utf-8'), end='')

o
n

lin
e.

p
y

http://www.ebi.ac.uk/ena/data/view/JN698960&display=fasta

Online files

from urllib.request import urlopen

download web page with random haiku

url = 'http://haikuguy.com/issa/random.php'

reader = urlopen(url)

parse page until start of haiku is found

marker = '<p class="english">'

line = reader.readline().decode('utf-8')

while line and not line.startswith(marker):

line = reader.readline().decode('utf-8')

read three haiku lines and display them

if line.startswith(marker):

print(line[len(marker):].strip()[:-6])

line = reader.readline().decode('utf-8')

print(line.strip()[:-6])

line = reader.readline().decode('utf-8')

print(line.strip()[:-4])

o
n

lin
e_

h
ai

ku
.p

y

http://haikuguy.com/issa/random.php

Alphabetic encoding

abcdefghijklmnopqrstuvwxyz

jfbqpwcvuamozhilgrxtkndesy

bakery

fjmprs

https://dodona.be/en/exercises/507386181/

Cellophane

https://dodona.be/en/exercises/546646130/

World Cup soccer

GROUP A

+-----------------------+-----+-------------------------+-----+

| | P | W L D F A S | Pts |

+-----------------------+-----+-------------------------+-----+

| France | 3 | 2 0 1 6 2 4 | 7 |

| Uruguay | 3 | 1 1 1 3 2 1 | 4 |

| South Africa | 3 | 1 1 1 3 4 -1 | 4 |

| Mexico | 3 | 0 2 1 1 5 -4 | 1 |

+-----------------------+-----+-------------------------+-----+

https://dodona.be/en/exercises/154882813/

Homework (hands-on)

• course book

➢ read chapter 5 (files and exceptions)

➢ read chapter 10 (more program development)

➢ read chapter 14 (files and exceptions II)

• have a look at the modules os and csv

• series 9 (text files)

➢ deadline mandatory exercises:

Tuesday, December 10, 2024 (22:00)

Homework (next lecture)

• course book

➢ read chapter 11 (introduction to classes)

Questions or remarks?

The sky is the limit …

"A haiku… is a hand beckoning, a door
half-opened, a mirror wiped clean. It is a
way of returning to nature, to our moon
nature, our cherry blossom nature, our
falling leaf nature, in short, to our
Buddha nature. It is a way in which the
cold winter rain, the swallows of evening,
even the very day in its hotness, and the
length of the night become truly alive,
share in our humanity, speak their own
silent and expressive language."

⎯ Reginald Horace Blyth

R.H. Blyth

1898-1964

	Dia 1: Python Programming
	Dia 2
	Dia 3
	Dia 4
	Dia 5: Input and output
	Dia 6: Input and output
	Dia 7: Read from files
	Dia 8: Read from files
	Dia 9: Read from files
	Dia 10: Read from files
	Dia 11: Read from files
	Dia 12: Read from files
	Dia 13: Read from files
	Dia 14: Read from files
	Dia 15: Read from files
	Dia 16: Read from files
	Dia 17: Read from files
	Dia 18: Read all at once …
	Dia 19: Read all at once …
	Dia 20: Read all at once …
	Dia 21: … or in chunks …
	Dia 22: … or in chunks …
	Dia 23: … or in chunks …
	Dia 24: … or in chunks …
	Dia 25: … or in chunks …
	Dia 26: … or in chunks …
	Dia 27: … or in chunks …
	Dia 28: … or line by line
	Dia 29: … or line by line
	Dia 30: … or line by line
	Dia 31: … or line by line
	Dia 32: … or line by line
	Dia 33: … or line by line
	Dia 34: List of lines
	Dia 35: List of lines
	Dia 36: List of lines
	Dia 37: List of lines
	Dia 38: List of lines
	Dia 39: Iterate files
	Dia 40: Iterate files
	Dia 41: Iterate files
	Dia 42: Iterate files
	Dia 43: Iterate files
	Dia 44: Iterate files
	Dia 45: Guaranteed file closure
	Dia 46: Guaranteed file closure
	Dia 47: The End of Line Puzzle
	Dia 48: The End of Line Puzzle
	Dia 49: The End of Line Puzzle
	Dia 50: The End of Line Puzzle
	Dia 51: Write to files
	Dia 52: Write to files
	Dia 53: Write to files
	Dia 54: Write to files
	Dia 55: Write to files
	Dia 56: Write to files
	Dia 57: Write to files
	Dia 58: Write to files
	Dia 59: Write to files
	Dia 60: Write to files
	Dia 61: Write to files
	Dia 62: Write to files
	Dia 63: Copy files
	Dia 64: Copy files
	Dia 65: Copy files
	Dia 66: Copy files
	Dia 67: Copy files
	Dia 68: Copy files
	Dia 69: Copy files
	Dia 70: Copy files
	Dia 71: Copy files
	Dia 72: Copy files
	Dia 73: Copy files
	Dia 74: Online files
	Dia 75: Online files
	Dia 76: Online files
	Dia 77: Alphabetic encoding
	Dia 78: Cellophane
	Dia 79: World Cup soccer
	Dia 80: Homework (hands-on)
	Dia 81: Homework (next lecture)
	Dia 82: Questions or remarks?
	Dia 83: The sky is the limit …

