
Ghent University
Faculty of Sciences

Prof. Dr. Peter Dawyndt

peter.dawyndt@ugent.be

@dawyndt

Python
Programming

introduction to
object-oriented programming

le
ct

u
re

s
week 1 week 2 week 3 week 4 week 5 week 6 week 7 week 8 week 9 week 10 week 11 week 12

re
ad

in
g

m
at

er
ia

l
h

an
d

s-
o

n
 s

es
si

o
n

extra
week

co
u

rs
e

b
o

o
k

C
H

9

co
u

rs
e

b
o

o
k

C
H

5

co
u

rs
e

b
o

o
k

C
H

0

co
u

rs
e

b
o

o
k

C
H

2

co
u

rs
e

b
o

o
k

C
H

3

co
u

rs
e

b
o

o
k

C
H

4

co
u

rs
e

b
o

o
k

C
H

6

co
u

rs
e

b
o

o
k

C
H

8

co
u

rs
e

b
o

o
k

C
H

1
1

co
u

rs
e

b
o

o
k

C
H

1
2

co
u

rs
e

b
o

o
k

C
H

1
3

co
u

rs
e

b
o

o
k

C
H

1

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

7

co
u

rs
e

b
o

o
k

C
H

9

co
u

rs
e

b
o

o
k

C
H

1
0

co
u

rs
e

b
o

o
k

C
H

1
4

co
n

d
it

io
n

al
s

lo
o

p
s

p
u

tt
in

g
it

al
l

to
ge

th
er

fu
n

ct
io

n
s

lis
ts

an
d

 t
u

p
le

s

lis
ts

an
d

 t
u

p
le

s

ad
va

n
ce

d
fu

n
ct

io
n

s

lis
t

co
m

p
re

h
en

si
o

n
s

an
d

 m
o

d
u

le
s

se
ts

 a
n

d

d
ic

ti
o

n
ar

ie
s

te
xt

fi
le

s

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

st
ri

n
gs

b
as

ic
 p

ro
gr

am
m

in
g

p
ri

n
ci

p
le

s

ex
p

re
ss

io
n

s
an

d

st
at

em
en

ts

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

lis
ts

an
d

 t
u

p
le

s

ad
va

n
ce

d
fu

n
ct

io
n

s
an

d
 m

o
d

u
le

s

ev
al

u
at

io
n

ex
p

re
ss

io
n

s
an

d

st
at

em
en

ts

co
n

d
it

io
n

al
s

lo
o

p
s

st
ri

n
gs

fu
n

ct
io

n
s

ev
al

u
at

io
n

se
ts

 a
n

d

d
ic

ti
o

n
ar

ie
s

te
xt

fi
le

s

o
b

je
ct

o
ri

en
te

d
p

ro
gr

am
m

in
g

fu
n

ct
iio

s
lis

ts
an

d
tu

p
le

s

• Python is an object-oriented programming language

➢ popular programming paradigm since mid 1980s

➢ handles rapidly increasing size and complexity of software

Object-oriented programming

write functions that
operate on data

create objects that
bundle both data
and functionality

object-oriented

programming

procedural

programming

• class: defines a new (compound) data type

➢ extension to built-in data types

User-defined compound types

(x, y)

(0, 0) X-axis

Y-
ax

is

class Point:

 pass

• class: defines a new (compound) data type

➢ extension to built-in data types

User-defined compound types

(x, y)

(0, 0) X-axis

Y-
ax

is

class Point:

 '''Representation of two-dimensional points'''

• class: defines a new (compound) data type

➢ Python enables creation of abstract data types (ADTs)

▪ "abstract" because they hide implementation details

▪ programmers interact with them through a limited set of

operations (methods), rather than by manipulating data

directly (encapsulation)

o fewer thing can go wrong (at least in theory)

o resulting code is easier to read

o makes code easier to maintain, since internals

can be changed without changing calling code

User-defined compound types

class Point:

 '''Representation of two-dimensional points'''

User-defined compound types

methods
(behavior)

properties
(status)

User-defined compound types

methods
(behavior)

str

'helium'
upper

lower

stripsplit

count

capitalizereplace

properties
(status)

User-defined compound types

properties
(status)

methods
(behavior)

Point

x: 3

y: 4

norm

distance

__mul____add__

__repr__

__init____str__

Classes and instances

• ADT usually created by defining a class that specifies

➢ how it stores state (properties)

➢ what it can do (methods)

➢ classes are also objects themselves, just like functions

• objects are created as instances of a class

➢ each object of a particular ADT shares the class's methods,

but usually has its own properties

➢ changes to one object thus do not affect the state of others

Classes and instances

class Point:

 '''Representation of two-dimensional points'''

• class Point defines a new data type: Point

➢ instantiation: creating a new instance of a class

▪ done by calling the class name as if it were a function

▪ classes are callable just like functions

➢ members of a data type: instances or objects

Classes and instances

>>> class Point:

... pass

...

>>> type(Point)

<class 'type'>

>>> p = Point()

>>> type(p)

<class '__main__.Point'>

• think of a class as a blueprint for making objects

➢ class Point is a factory for making points

➢ class Point isn't an instance of a point, but it

contains the machinery to make point instances

Classes and instances

>>> class Point:

... pass

...

>>> type(Point)

<class 'type'>

>>> p = Point()

>>> type(p)

<class '__main__.Point'>

• object instances both have state and behavior

➢ attributes of an instance determine its state

➢ instances have their own namespace (just like modules)

➢ attribute: name in namespace (instances and modules)

▪ use dot notation to access name from namespace

▪ similar to module syntax: math.pi, string.uppercase

Properties

>>> class Point:

... pass

...

>>> p = Point()

>>> p.x = 3

>>> p.y = 4

namespace

Point

Properties
objects (main memory)

type

>>> class Point: pass

namespace

Point

p

Properties
objects (main memory)

type

Point

>>> p = Point()

__class__

namespace

Point

p

3

int

4

int

Properties
objects (main memory)

type

Point

>>> p.x, p.y = 3, 4

x

y

__class__

Properties

>>> class Point:

... pass

...

>>> p = Point()

>>> p.x = 3

>>> p.y = 4

>>> p.y

4

>>> x = p.x

namespace

Point

p

x

3

int

4

int

Properties
objects (main memory)

type

Point

x

y

>>> x = p.x

__class__

Properties

>>> class Point:

... pass

...

>>> p = Point()

>>> p.x = 3

>>> p.y = 4

>>> p.y

4

>>> x = p.x

>>> x

3

>>> print(f'({p.x:.2f}, {p.y:.2f})')

(3.00, 4.00)

>>> norm = (p.x ** 2 + p.y ** 2) ** 0.5

>>> norm

5.0

(3, 4)

(0, 0) X-axis
Y-

ax
is

norm

• give a class methods by defining functions inside of it

➢ object itself is always passed to the method as its first argument

▪ universally called self

▪ unlike this in C++ and Java, the name is just a convention

▪ but everyone uses it, and you should too

Methods

>>> class Point:

... def norm(self):

... return (self.x**2 + self.y**2) ** 0.5

...

>>> p = Point()

• give a class methods by defining functions inside of it

➢ calling methods: object.method(arguments)

▪ finds the class C that object is an instance of

▪ then calls C.method(object, arguments)

Methods

>>> class Point:

... def norm(self):

... return (self.x**2 + self.y**2) ** 0.5

...

>>> p = Point()

>>> p.x, p.y = 3, 4

>>> p.norm()

5.0

>>> Point.norm(p)

5.0

namespace

Point

p

x

3

int

4

int

Methods
objects (main memory)

type

norm 1010101001…

function

Point

x

y

>>> p.norm()

__class__

namespace

Point

p

x

3

int

4

int

Methods
objects (main memory)

type

norm 1010101001…

function

Point

x

y

>>> Point.norm(p)

__class__

• class Point intends to represent two-dimensional points

➢ all point instances ought to have x and y attributes

The initialisation method

>>> p2 = Point()

>>> p2.x

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AttributeError: Point instance has no attribute 'x'

The initialisation method
p

o
in

t1
.p

y

class Point:

def __init__(self, x=0, y=0):

self.x = x

self.y = y

def norm(self):

return (self.x ** 2 + self.y ** 2) ** 0.5

• class Point intends to represent two-dimensional points

➢ all point instances ought to have x and y attributes

➢ initialisation method __init__ initialises Point objects

▪ called automatically when the class is called (instantiation)

▪ for that reason it is sometimes named the constructor

▪ analogy: list() constructs a list, str() constructs a string

The initialisation method

>>> from point1 import Point

>>> p = Point(3, 4)

>>> p.x

3

>>> p.y

4

>>> p.norm()

5.0

>>> x = p.x

>>> q = Point(9, 2)

>>> q.x

9

>>> q.y

2

>>> q.norm()

9.2195444572928871

namespace

Point

p

x

x

y

3

int

4

int

9

str

2

str

The initialisation method
objects (main memory)

type

norm

__init__

__str__

1010101001…

function

0101111100…

function

1110110110…

function

Point Point

q

>>> p, q = Point(3, 4), Point(9, 2)

x

y

__class__ __class__

• an object can be passed as an argument to a function

in the usual way

Instances as parameters

>>> p, q = Point(3, 4), Point(9, 2)

>>> def display(p):

... print(f'({p.x:.2f}, {p.y:.2f})')

>>> display(p)

(3.00, 4.00)

>>> def vectorsum(p1, p2):

... return Point(p1.x + p2.x, p1.y + p2.y)

Instances as parameters

(3, 4)

(0, 0) X-axis

Y-
ax

is

(9, 2)

(12, 6)

>>> def vectorsum(p1, p2):

... return Point(p1.x + p2.x, p1.y + p2.y)

• an object can be passed as an argument to a function

in the usual way

Instances as parameters

>>> p, q = Point(3, 4), Point(9, 2)

>>> def display(p):

... print(f'({p.x}, {p.y})')

>>> display(p)

(3.00, 4.00)

>>> def vectorsum(p1, p2):

... return Point(p1.x + p2.x, p1.y + p2.y)

>>> r = vectorsum(p, q)

>>> isinstance(r, Point)

True

>>> display(r)

(12.00, 6.00)

Operator overloading

Operator overloading

• methods behave like functions, but

➢ methods are defined inside class definitions

▪ explicit relationship between class and method

➢ syntax used to call methods differs

from syntax use to call functions

p
o

in
t1

.p
y

class Point:

def __init__(self, x=0, y=0):

self.x = x

self.y = y

def norm(self):

return (self.x ** 2 + self.y ** 2) ** 0.5

Operator overloading
p

o
in

t2
.p

y

class Point:

def __init__(self, x=0, y=0):

self.x = x

self.y = y

def norm(self):

return (self.x ** 2 + self.y ** 2) ** 0.5

def display(self):

return f'({self.x:.2f}, {self.y:.2f})'

def vectorsum(self, other):

return Point(self.x + other.x, self.y + other.y)

>>> from point2 import Point

>>> p, q = Point(3, 4), Point(9, 2)

>>> p.display()

'(3, 4)'

>>> r = p.vectorsum(q)

>>> r.display()

'(12, 6)'

• built-in functions and operators applied to object o are

automatically forwarded to method calls on class C

• str(o) → C.__str__(o)

▪ returns string representation of object o

▪ str function is called implicitly by print function

• repr(o) → C.__repr__(o)

▪ returns "internal" string representation of object o

• len(o) → C.__len__(o)

• o + o2 → C.__add__(o, o2)

• o * o2 → C.__mul__(o, o2)

Operator overloading

class C: pass

o = C()

Operator overloading
p

o
in

t3
.p

y

class Point:

def __init__(self, x=0, y=0):

self.x = x

self.y = y

def norm(self):

return (self.x ** 2 + self.y ** 2) ** 0.5

def __str__(self):

return f'({self.x:.2f}, {self.y:.2f})'

def __repr__(self):

return f'Point({self.x}, {self.y})'

def __add__(self, other):

return Point(self.x + other.x, self.y + other.y)

>>> from point3 import Point

>>> p, q = Point(3, 4), Point(9, 2)

>>> p

Point(3, 4)

>>> r = p + q

>>> print(r)

(12.00, 6.00)

Domino tiles

+---+ +---+ +---+ +---+ +---+ +---+ +---+

| | | | |o | |o | |o o| |o o| |ooo|

| | | o | | | | o | | | | o | | |

| | | | | o| | o| |o o| |o o| |ooo|

+---+ +---+ +---+ +---+ +---+ +---+ +---+

0 1 2 3 4 5 6

https://dodona.be/en/exercises/1751367082/

Roman numerals

https://dodona.be/en/exercises/995728649/

• Python 2.x

➢ differentiates between 'new style' and 'old style' classes

➢ most differences are in advanced (technical) details

• Python 3.x

➢ no difference between 'new style' and 'old style' classes

Classes: 'new style' vs 'old style'

class Point:

 pass

old
style

class Point(object):

 pass

new
style

class Point:

 pass

new
style

class Point(object):

 pass

new
style

OOP characteristics

Homework (next lecture)

• course book

➢ read chapter 12 (more on classes)

➢ read chapter 13 (OOP development)

➢ pay attention in particular to OOP terminology

• classroom exercises (series 10)

➢ Roman numerals

➢ Immune system

https://dodona.be/en/exercises/995728649/
https://dodona.be/en/exercises/505435360/

Homework (hands-on sessions)

• mandatory exercises series 10 (OOP)

➢ deadline: Tuesday, December 17, 2024

• second evaluation

➢ Monday, December 16, 2024 (14:30-16:45)

➢ Tuesday, December 17, 2024 (10:00-12:15)

➢ register via Ufora groups

Questions or remarks?

The sky is the limit …

"Classes struggle,

some classes triumph,

others are eliminated."

⎯ Mao Zedong

Mao Zedong

1893-1976

	Dia 1: Python Programming
	Dia 2
	Dia 3: Object-oriented programming
	Dia 4: User-defined compound types
	Dia 5: User-defined compound types
	Dia 6: User-defined compound types
	Dia 7: User-defined compound types
	Dia 8: User-defined compound types
	Dia 9: User-defined compound types
	Dia 10: Classes and instances
	Dia 11: Classes and instances
	Dia 12: Classes and instances
	Dia 13: Classes and instances
	Dia 14: Properties
	Dia 15: Properties
	Dia 16: Properties
	Dia 17: Properties
	Dia 18: Properties
	Dia 19: Properties
	Dia 20: Properties
	Dia 21: Methods
	Dia 22: Methods
	Dia 23: Methods
	Dia 24: Methods
	Dia 25: The initialisation method
	Dia 26: The initialisation method
	Dia 27: The initialisation method
	Dia 28: The initialisation method
	Dia 29: Instances as parameters
	Dia 30: Instances as parameters
	Dia 31: Instances as parameters
	Dia 32: Operator overloading
	Dia 33: Operator overloading
	Dia 34: Operator overloading
	Dia 35: Operator overloading
	Dia 36: Operator overloading
	Dia 37: Domino tiles
	Dia 38: Roman numerals
	Dia 39: Classes: 'new style' vs 'old style'
	Dia 40: OOP characteristics
	Dia 41: Homework (next lecture)
	Dia 42: Homework (hands-on sessions)
	Dia 43: Questions or remarks?
	Dia 44: The sky is the limit …

