
General

Sets and dictionaries in doctests

The elements of a set and the keys of a dictionary do not have a particular order. This means that two sets
or two dictionaries are equal, irrespective of the order in which the elements/keys have been added to the
set/dictionary.

>>> {1, 3, 2, 4} == {4, 3, 1, 2}
True
>>> {'A': 1, 'B': 2, 'C': 3} == {'B': 2, 'A': 1, 'C': 3}
True

When working with doctests, however, sets and dictionaries might cause you trouble. The reason for this
problem is that in comparing expected and generated results, doctests proceed as follows: the expected
result is extracted from the doctest as a string, and the value returned by a function or resulting from the
evaluation of an expression is converted to a string. These two strings are then compared with each other (as
a string, not as a set or a dictionary). In comparing strings, the order of the characters is important, and
that’s what’s causing the trouble.

>>> d1 = {'A': 1, 'B': 2, 'C': 3}
>>> s1 = str(d1) # executed on computer 1
>>> d1
"{'A': 1, 'C': 3, 'B': 2}"
>>> d2 = {'A': 1, 'B': 2, 'C': 3}
>>> s2 = str(d2) # executed o computer 2
"{'A': 1, 'B': 2, 'C': 3}"
>>> d1 == d2
True
>>> s1 == s2
False

Although dictionaries d1 and d2 have the same value, the doctest indicates that the string representations
of these two dictionaries are different. The conversion of a set/dictionary to a string may depend on the
computer that executes the code, the Python version used on that computer, and might even differ if you
do repeat the same conversion on the same computer using the same Python version. The problem can be
solved by making sure the doctests do not compare strings, but directly compare sets or dictionaries. For
example, if a doctest initially looks like

>>> aFunction(parameter1, parameter2)
{'A' : 1, 'B': 2, 'C': 3}

you may better rewrite this doctest as

>>> aFunction(parameter1, parameter2) == {'A' : 1, 'B': 2, 'C': 3}
True

This problem never occurs on Dodona, since its way of testing the source code never converts return values
or results of expression evaluations into strings, but directly compares the resulting objects.

1

Changing gender

General information

Remarks

String method capitalize()

The string method capitalize can be used to convert the first character of a string to uppercase (if it is a
letter) and all other characters to lowercase (if they are letters).

>>> 'aBcD'.capitalize()
'Abcd'

Sacred Cat of Burma

General information

Assign values to keys in a dictionary

When associating a value with a dictionary key, you may have to take into account that the dictionary may
or may not already associate a value to this key. It is often the case that you have to add a new key/value
pair in case the key was not used in the dictionary, and thay you have to update an existing key/value pair
in case the key was already used in the dictionary.

Figure 1: update dictionary

This technique can to be used, for example, for the construction of frequency tables. A frequency table is a
dictionary that maps each key onto an integer that indicates how often the key occurs in a container object
(e.g. a list, a tuple or a set).

>>> aList = ['R', 'S', 'E', 'E', 'N', 'T', 'E', 'I', 'L', 'D', 'I']
>>> frequentietabel(aList)
{'E': 3, 'S': 1, 'D': 1, 'N': 1, 'T': 1, 'R': 1, 'L': 1, 'I': 2}

The above technique can be used to implement the function frequencyTable.

2

def frequencyTable(aList):
freq = {} # create empty dictionary
for element in aList:

if element not in freq:
freq[element] = 0 # add element to dictionary with initial value 0

freq[element] += 1 # update value associated with element

In this case you could have also used the dictionary method get. This method returns the value associated
with a given key in the dictionary. In contrast to indexing dictionaries using square brackets to fetch the
value associated with a given key, the get method will never result in a KeyError in case the key does not
occur in the dictionary. Instead, the get method by default returns the value None if the key does not occur
in the dictionary. If you pass a value to the second optional parameter, this value will be returned as the
default value in case the get method does not find the key in the dictionary.

>>> d = {'A': 1, 'B': 2, 'C': 3}
>>> d['A']
1
>>> d.get('A')
1
>>> d['D']
Traceback (most recent call last):
KeyError : 'D'
>>> d.get('D') # returns the value None
>>> d.get('D', 0)
0

Catch as catch can

General information

Variable number of keyword arguments

Sometimes you won’t like to fix the arguments of a function beforehand. The use of a double star as an
operator in front of a function parameter allows you to accomplish this.

>>> def aFunction(**kwargs):
... for key in kwargs:
... print("The parameter '{}' has value '{}'.".format(key, kwargs[key]))
...
>>> aFunction(name='Tim', age=8, location='Ghent')
The parameter 'name' has value 'Tim'.
The parameter 'age' has value '8'.
The parameter 'location' has value 'Ghent'.

The variable kwargs (without the double star) now is a dictionary that maps parameter names onto their
corresponding values.

Sometimes it’s also handy not to pass a sequence of keyword arguments when calling a function, but instead
wrap those arguments in a dictionary whose keys correspond to the parameter names.

3

>>> def aFunction(name, age, location):
... print("{} is {} years old and lives in {}.".format(name, age, location))
>>> kwargs = {'name': 'Tim', 'age': 8, 'location': 'Ghent'}
>>> functie(**kwargs)
Tim is 8 years old and lives in Ghent.

Specific information

In the description of this assignment you’ll find that if

n− 1

parameter values are known for a linear equation with

n ∈ N

parameters (with
n ≥ 2

), the missing parameter value can be computed directly from the formula. This especially holds for the
juggling equation. To avoid that you’ll have to do the derivations yourself, we have already solved the juggling
equation for each of its parameters.

B = H(F +D)
V +D

H = B(V +D)
F +D

F = B(V +D)
H −D

V = H(F +D)
B −D

D = BV −HF
H−B

4

	General
	Sets and dictionaries in doctests

	Changing gender
	General information
	Remarks
	String method capitalize()

	Sacred Cat of Burma
	General information
	Assign values to keys in a dictionary

	Catch as catch can
	General information
	Variable number of keyword arguments

	Specific information

