
General

Formatted text: string interpolation

When you need a controlled way to compose a string as a mix of fixed and variable fragments, it might be
handy to make use of string interpolation. An interpolated string is a regular string that is prefixed with
the letter f (in front of the opening single or double quote). As a result, interpolated strings are also called
f-strings.

An f-string serves as a kind of template, with each variable fragment indicated by a pair of curly braces ({}).
In between these curly places you place an expression whose value will fill up the position of the variable
fragment in the resulting string.

For example, in the following code fragment we define two variables number1 and number2 whose sum we
want to output. We use string interpolation to output formatted text that contains the two individual terms
and the result of adding the two terms.
>>> number1 = 2
>>> number2 = 3
>>> print(f'The sum of {number1} and {number2} is {number1 + number2}.')
The sum of 2 and 3 is 5.

A pair of curly braces in an interpolated string is called a placeholder. Inside such a placeholder you cannot
only put an expression, but after a colon you can also specify how the value of that expression must be
formatted (read: how it needs to be converted into a fixed string). More details about the different ways to
specify this formatting can be found in The Python Standard Library.

Best laid plans

General information

Output floats with a fixed number of decimal digits (rounded)

By default the built-in function print format floating point numbers using a large number of decimal digits.
However, sometimes you will want to print floating point numbers with a fixed number of decimal this. You
could try to use the built-in function round to achieve this, as it allows rouning of numbers up to a given
number of decimal digits.
>>> print(1 / 3)
0.3333333333333333
>>> print(round(1 / 3, 2))
0.33

The problem with this solution is that rounding errors due to the internal representation of floating point
numbers, may generate numbers that are not printed with the desired number of decimal digits.

A better solution makes use of the string method format to specify the number of decimal digits when
formatting floating point numbers as text. Inside a pair of curly braces that represents a placeholder in the
template string, you may specify how the value that fills up the placeholder must be formatted. This is done
by placing a so-called format specifier in between the curly braces. The format specifier itself is preceded by
a colon (:).

To format a value as a floating point number with a fixed number of decimal digits, you can use the format
specifier :.nf. Here, the letterf‘ indicates that the value must be formatted as a floating point number,
and the number n indicates the number of decimal digits. The following code shows, for example, how a
number can be formatted as a floating point number, rounded up to two decimal digits.

1

https://www.python.org/dev/peps/pep-0498/
https://docs.python.org/3/library/string.html#string-formatting

>>> print(f'{1 / 3:.2f}')
0.33

We refer to The Python Standard Library for more details about the use of format specifiers.

Remarks

Multiplication: operator *

Do not forget to use the operator * if you want to multiply two numbers with each other. In mathematics
it is commonplace to write multiplication without any operator. In this case, the notation xy is used for
example to indicate the product of x and y. Python forces you to write the multiplication explicitly, by using
the operator *.
>>> x = 6
>>> y = 7
>>> x * y
42
>>> xy
Traceback (most recent call last):
NameError : name 'xy' is not defined

Human development index

General information

Extra mathematical functionality: the math module

It is an explicit design choice to keep the Python programming language as small as possible. However,
there are mechanism built into the language to extend the language with new functionality. When Python is
installed, a number of these modules are shipped with it. These modules together are referred to as The
Python Standard Library.

The math module is one of these methods from the The Python Standard Library. As you might derive from
its name, the math module adds some mathematical functionality to Python. Before you can start using this
functionality, however, you must first import the module. There are two ways in which this can be done.

The first way imports the module as a whole. After this has been done, you must prefix the names of variables,
functions or classes that are defined in the module with the name of the module and a dot if you want to use
them in your Python code.
>>> import math
>>> math.sqrt(16) # square root
4.0
>>> math.log(100) # natural logarithm
4.605170185988092
>>> math.log(100, 10) # log10
2.0
>>> math.pi # accurate value of pi
3.141592653589793

The second way only imports some specific names of variables, functions or classes in your Python code.
After this has been done, you can directly use these names without prefixing them.

2

https://docs.python.org/3/library/string.html#string-formatting
https://docs.python.org/3/library/
https://docs.python.org/3/library/
https://docs.python.org/3/library/

>>> from math import sqrt, log, pi
>>> sqrt(16) # square root
4.0
>>> log(100) # natural logarithm
4.605170185988092
>>> log(100, 10) # log10
2.0
>>> pi # naccurate value of pi
3.141592653589793

We refer to The Python Standard Library for a complete overview of the variables and functions defined in
the math module.

Remarks

Square root

The square root of a number can be computed using the sqrt function from the math module.
>>> import math
>>> math.sqrt(121)
11.0
>>> math.sqrt(1234)
35.12833614050059

Because
√

x = x1/2 the power operator (**) can be used as well to compute the square root.
>>> 121 ** (1 / 2)
11.0
>>> 1234 ** 0.5
35.12833614050059

Specific information

As a debugging aid, we provide you with some intermediate values that need to be computed before you can
generate the output corresponding to the given sample input:

LEI = 0.9718780096308187
EI = 0.846147794929596

MYSI = 0.8233902000000001
EYSI = 0.7864077669902911

II = 0.8562070881051073

3

https://docs.python.org/3/library/math.html?highlight=math#module-math

The pudding guy

General information

Floating point division versus integer division

Python makes a clear distinction between floating point division (indicated by the operator /) and integer
division (indicated by the operator //). Floating point division always results in a float. However, with
integer division, the data type of the result depends on the data type of the operandi. If both operandi are
integers, the result is an integer as well. If one or two of the operandi are floats, the result is itself a float.
>>> x = 8
>>> y = 3
>>> z = 4
>>> x / y # floating point division of two integers
2.6666666666666665
>>> x // y # integer division of two integers
2
>>> float(x) // y # integer division of a float and an integer
2.0
>>> x / z # floating point division of two integers
2.0
>>> x // z # integer division of two integers
2

Python decides which kind of division to use solely based on the operator that is being used. The choice
between floating point division or integer division is not influenced by the data types of the operandi.
>>> x = 7.3
>>> y = 2
>>> x // y
3.0
>>> y // x
0.0
>>> x / y
3.65

The stopped clock

General information

Remainder after integer division: the module operator (%)

In Python you can use the modulo operator (%) to determine the remainder after integer division. If both
operandi are integers, the result is itself an integer. As soon as one of the operandi is a float, the result will
be a float.
>>> 83 % 10
3
>>> 83.0 % 10
3.0
>>> 83 % 10.0
3.0

4

>>> 83.0 % 10.0
3.0

Specific information

For this assignment it’s a good idea to convert any time indicated by a 24-hour clock into the number of
minutes that have elapsed since midnight at that point in time. If the clock indicates h : m, then the number
of elapsed minutes since midnight equals

60× h + m

Say that the number of elapsed minutes since midnight equals t, then we can easily invert the above procedure
to derive the corresponding time h : m as indicated by a 24-hour clock. In Python you can implement this in
the following way:
>>> elapsed = 868 # minutes elapsed since midnight
>>> hours = (elapsed // 60) % 24 # hours elapsed since midnight
>>> minutes = elapsed % 60 # minutes elapsed since last hour

>>> hours
14
>>> minutes
28

Please note that we have made use of integer division (//) and remainder after integer division (%). The use
of the modulo operator in determing the number of hours that have elapsed since midnight (% 24) makes sure
the hours on a 24-hour clock are still correctly computed in case the number of minutes that have elapsed
since midnight is longer than a full day.

Using the above method we can now compute the total number of minutes that Andrea has been away from
her home, and the total number of minutes she has spent at her friend’s home. In doing so, we only need to
take into account that the start and end time points of the time interval do not necessarily have to fall in the
same day. For example, Andrea can leave home before midnight and only return home after midnight.

5

	General
	Formatted text: string interpolation

	Best laid plans
	General information
	Output floats with a fixed number of decimal digits (rounded)
	Remarks
	Multiplication: operator *

	Human development index
	General information
	Extra mathematical functionality: the math module
	Remarks
	Square root

	Specific information

	The pudding guy
	General information
	Floating point division versus integer division

	The stopped clock
	General information
	Remainder after integer division: the module operator (%)

	Specific information

