General

Reuse existing functionality

Functions are control structures that allow to avoid unnecessary code duplication. Code duplication is the
phenomenon where multiple copies of the same or highly similar code occur in the source code of a program.
It is always a good idea to avoid code duplication.

Also take into account the possibility to call other functions while implementing a function. Sometimes it
will be explicitly stated in the description of an assignment that you have to reuse an existing function (one
that you implemented earlier) in the implementation of a new function. But in other cases such an statement
will not be made explicit in de description of the assignment, while it implicitly remains a goal to detect
possible code reuse while implementing the functions.

Say for example that you were asked to implement two functions: maxsum and mindiff. The first function
maxsum takes three arguments, and needs to return a Boolean value that expresses whether or not the sum
of the first two arguments is less than the value of the third argument. The second function mindiff takes
three arguments, and needs to return a Boolean value that expresses whether or not the absolute value of the
difference of the first two arguments is larger than the value of the third argument. Both functions can be
implemented as follows.

def maxsum(x, y, a):
return x + y < a

def mindiff(x, y, b):
return abs(x - y) > b

Now, say that you are also asked to implement a third function minmax that takes four arguments, and needs
to return a Boolean$ value that expresses whether or not the sum of the first two arguments is less than the
value of the third argument AND the absolute value of the difference of the first two arguments is larger than
the value of the fourth argument. You could implement this function in the following way.

def minmax(x, y, a, b):
return x + y < a and abs(x - y) > b

However, this implementation completely reinvents the wheel since the condition that needs to be check in
this function is nothing but the composition of the two conditions that need to be checked in the functions
maxsum and mindiff. As a result, it is a far better solution to implement the function minmax in the following
way.
def minmax(x, y, a, b):

return maxsum(x, y, a) and mindiff(x, y, b)

In case there is a need to make a modification to your implementation of the function maxsom (because
you have found out there is a more efficient strategy for the implementation, or the initial implementation
contained a bug), you only have to make the adjustments at a single location in your source code, and not in
two locations if you had copied the source code for the implementation of the function minmax.

Functions/methods: return vs print

In assignments where you are asked to implement functions or methods, you should read carefully if the
function either needs to return a result, or if the function needs to print a result. A return statement must
be used to let the function return a result. The built-in function print must be used to let the function print
a result to standard output (short: stdout).

In the assignment C-sum (series 05) you are asked, for example, to write a function csum that must return a
result. One possible correct implementation of this function is

http://www.spoj.com/COMBIO15/problems/PROG0024/

def csum(number):
return number % 9

where a return statement is used to have the function return a computed value. Suppose that we erroneously
used the built-in function print to write the computed value to stdout, and submitted the following incorrect
solution for this assignment.

def csum(number):
print (number % 9)

In this case, the Dodona platform would evaluate the submission as a wrong answer, where the following
feedback would be given on the feedback page.

csom(8) »
8

Error: expected return type int but nothing was returned
a8

Error: unexpected output was generated on stdout

Figure 1: return vs print

The feedback contains two remarks. The first remark indicates that the function was expected to return an
integer value (8), but instead the function did not return any value (or more precisely, the function returned
the value None). This is the meaning of the error message

Error: expected return type int but nothing was returned

In addition, a second remark indicates that the function has written some information to stdout, whereas no
information was expected on this output channel. This is the meaning of the error message

Error: unexpected output was generated on stdout

If you would have used a return statement instead of the built-in function print, both error message would
have disappeared and the Dodona platform would have evaluated the submission as a correct answer. Also
note that results returned by a function/method are marked with a thick yellow line in the feedback table,
whereas results that are printed by a function/method are marked with a thick black line.

Transitions and transversions

General information
Working with floating point numbers in doctests

If a function returns a floating point number, this might give trouble when testing the correctness of the
function using a doctest. This is caused by the fact that doctests perform an exact match between the string
that represents the result in the doctest, and the result that is printed or returned by the function. In order
to do this, the result of the function is first converted into a string. In comparing these two strings, doctests
thus do not take into account the possibility of rounding errors that might occur when working with floating
point numbers. These rounding errors are a consequence of the limited precision with which computers can
represent real-valued numbers.

>>> 0.1

0.1

>>> 0.1 + 0.1 + 0.1

0.30000000000000004

If in executing a doctest the expected output (a string) does not exactly match the string representation that
is returned by the function, the doctest will consider the result as incorrect.

The Dodona environment does take into account rounding errors when working with floating point numbers.
Unless otherwise stated in the assignment, Dodona will check if the result is correct up to six decimal digits
for functions that return floating point numbers (either directly or as elements of compound data types).
This more or less comes down to rewriting a doctest according to the following strategy.

def multiply(x):

mmn

>>> abs(multiply(0.1) - 0.3) < le-6

True
mnnn

return 3 * X

The ouroboros dream

General information
Sorting the characters of a string

If you want to sort the letters of a string in alphabetic order, you can make use of the built-in function
sorted. This function takes an iterable object (e.g. a string) and returns a list containing the elements of
the iterable object in increasing order. For strings, this is a list containing the individual characters of the
string, arranged according to the order of the characters in the ASCII table. As a result, letters are ordered
in alphabetic order (but all uppercase letters come before all lowercase letters in the ASCII table).

>>> sorted('Python')

[IPI, 'h', 'Il', 'O', 't', lyl]
>>> sorted('Python'.lower())
[lhl’ lnl’ lol’ |p|’ It', |y|]

	General
	Reuse existing functionality
	Functions/methods: return vs print

	Transitions and transversions
	General information
	Working with floating point numbers in doctests

	The ouroboros dream
	General information
	Sorting the characters of a string

