
General

Copy text file to PyCharm

If you want to locally test your solution for an assignment using text files, you must also make sure to have a
local copy of the text files. Otherwise the test cases of the doctest will not be able to access these text files.
The text files that are used in a given doctest are always linked in the description on top of the doctest. You
can inspect the content of these text files in your browser by clicking this link.

The most general procedure to obtain a local copy of these text files in PyCharm goes as follows:

• open the text file in your browser
• copy the file content to the clipboard (CTRL-A + CTRL-C)
• create a new text file in Pycharm

– right click the directory that needs to contain the text file (you must make sure that the text file
is in the same directory as your Python script)

– chose the menu item New and then the menu item File
– enter the correct name of the file; make sure that the file extension must also be given (usually

.txt)
• paste the content of the clipboard into the file (CTRL-V)

The following screenshot shows you the way.

Figure 1: menu new file

If you submit a solution to Dodona, the platform will make sure that the necessary text files are in the same
directory as the Python script.

Newlines when reading lines from text files

If Python needs to read the next line from a text file, it will continue reading until the first newline character
('\n') or the end of the file is reached. The last character of the line that was read from the file will therefore
usually be a newline (unless the last line of the file did not end in a newline).

1



The string method rstrip can be used to remove the trailing newline at the end of a line. In case this
method is called without any arguments, all whitespace characters (spaces, tabs and newlines) at the end of
the line will be removed. To make sure that only the newline is removed from the end of the line, you may
pass the newline character as an argument to the rstrip method.
>>> line = infile.readline()
>>> line
'This is the next line in the file.\n'
>>> line.rstrip('\n')
'This is the next line in the file.'

Sanger sequencing

General information

Remarks

Split on whitespace

The string method split can be used to split a string into a list of substrings. In case no argument is passed
to the method, the method will remove all leading and trailing whitespace characters (spaces, tabs and
newlines), and then split the string into the substrings that are separated from each other by one or more
whitespace characters.

In case a string argument is passed to the string method split, the method will use this argument to split
the string at each occurrence of the argument. Say, for example, that the string contains two consecutive
spaces, then the string method split without an argument will split once at that position, whereas the string
method split with a space character as an argument will split twice at that position. In the latter case, an
empty string will result as the substring between the two spaces.
>>> text = 'a;b c;d;e\t f'
>>> text.split()
['a;b', 'c;d;e', 'f']
>>> text.split(' ')
['a;b', '', 'c;d;e\t', '', 'f']
>>> text.split(';')
['a', 'b c', 'd', '', 'e\t f']
>>> text.split('\t')
['a;b c;d;e', ' f']

Huntington-Hill method

General information

Separatly process the first line of a text file

When processing text files, it may well happen that the first line of the text file plays a different role than the
other lines in the file (e.g. a header line). In these case, you may want to process the first line of the file
separate from the other lines of the file.

Say, for example, that we have the following text file.

2



first
second
third

You can read and process the first line of this file separate from the next lines in the file in the following way.
>>> infile = open('filename.txt', 'r')
>>> firstLine = infile.readline()
>>> firstLine
"first\n"
>>> otherLines = []
>>> for line in infile:
... otherLines.append(line)
>>> otherLines
["second\n", "third\n"]

It’s important to know that Python by default never iterates of the same line twice. If you need to process
the lines of a file multiple times, you may close the file after the first iteration (using the built-in function
close) and open it again to start a second iteration (using the built-in function open). As an alternative,
you can use the method seek on an opened file object to put the file pointer back at the start of the file (or
at any other position in the file).

Living former presidents

General information

Remarks

String representation of tabs

The character that represents a tab in the ASCII table, may be represented in a Python string as '\t'.

3


	General
	Copy text file to PyCharm
	Newlines when reading lines from text files


	Sanger sequencing
	General information
	Remarks
	Split on whitespace


	Huntington-Hill method
	General information
	Separatly process the first line of a text file


	Living former presidents
	General information
	Remarks
	String representation of tabs



