General

Formatted text: string interpolation

When you need a controlled way to compose a string as a mix of fixed and variable fragments, it might be
handy to make use of string interpolation. An interpolated string is a regular string that is prefixed with
the letter £ (in front of the opening single or double quote). As a result, interpolated strings are also called
f-strings.

An f-string serves as a kind of template, with each variable fragment indicated by a pair of curly braces ({}).
In between these curly braces you place an expression whose value will fill up the position of the variable
fragment in the resulting string.

For example, in the following code fragment we define two variables number1 and number2 whose sum we
want to output. We use string interpolation to output formatted text that contains the two individual terms
and the result of adding the two terms.

>>> numberl = 2

>>> number2 = 3

>>> print(f'The sum of {numberl} and {number2} is {numberl + number2}.')
The sum of 2 and 3 is 5.

A pair of curly braces in an interpolated string is called a placeholder. Inside such a placeholder you cannot
only put an expression, but after a colon you can also specify how the value of that expression must be
formatted (read: how it needs to be converted into a fixed string). More details about the different ways to
specify this formatting can be found in The Python Standard Library.

Mercator projection

Extra mathematical functionality: the math module

It is an explicit design choice to keep the Python programming language as small as possible. However,
there are mechanism built into the language to extend the language with new functionality. When Python is
installed, a selection of these modules are shipped as well. These modules are referred to as The Python
Standard Library.

The math module is one of these modules from the The Python Standard Library. As you might derive from
its name, the math module adds some mathematical functionality to Python. Before you can start using this
functionality, however, you must first import the module. There are two ways in which this can be done.

The first way imports the module as a whole. After this has been done, you must prefix the names of variables,
functions or classes that are defined in the module with the name of the module and a dot if you want to use
them in your Python code.

>>> import math

>>> math.sqrt(16) # square Toot

4.0

>>> math.log(100) # natural logarithm
4.605170185988092

>>> math.log(100, 10) # log10

2.0

>>> math.pi # accurate value of pi

3.141592653589793

https://www.python.org/dev/peps/pep-0498/
https://docs.python.org/3/library/string.html#string-formatting
https://docs.python.org/3/library/
https://docs.python.org/3/library/
https://docs.python.org/3/library/

The second way only imports some specific names of variables, functions or classes in your Python code.
After this has been done, you can directly use these names without prefixing them.

>>> from math import sqrt, log, pi

>>> sqrt(16) # square Toot

4.0

>>> 1og(100) # natural logarithm
4.605170185988092

>>> log(100, 10) # log10

2.0

>>> pi # naccurate value of pi

3.141592653589793

We refer to The Python Standard Library for a complete overview of the variables and functions defined in
the math module.

Trigonometric functions from the math module

The math module from the Python Standard Library defines a couple of trigonometric functions such
as the sine function (sin), the cosine function (cos) and the tangent function (tan). It’s important to
pay attention to the fact that these functions expect an angle expressed in radians, and not in degreees.
Luckily enough, the math module also defines functions to convert an angle expressed in degrees into radians
(radians) and vice versa (degrees).

>>> import math

>>> angle = 90

>>> radians = math.radians(angle)
>>> radians

1.5707963267948966

>>> radians == math.pi / 2

True

>>> math.cos(radians) # must evaluate to 0, but note the rounding error
6.123233995736766e-17

>>> math.sin(radians)

1.0

Vis viva
Floating point division versus integer division

Python makes a clear distinction between floating point division (indicated by the operator /) and integer
division (indicated by the operator //). Floating point division always results in a float. However, with
integer division, the data type of the result depends on the data type of the operandi. If both operandi are
integers, the result is an integer as well. If one or two of the operandi are floats, the result is itself
afloat".

>>>
>>>
>>>
>>> x

2.6666

N < X
I

[I N ||

floating point division of two integers

A< b W o

66666666665

https://docs.python.org/3/library/math.html?highlight=math#module-math
https://docs.python.org/3/library/

>>>x //y # integer division of two integers

2

>>> float(x) // y # integer division of a float and an integer
2.0

>>>x / =z # floating point division of two integers
2.0

>>> x // 2z # integer division of two integers

2

Python decides which kind of division to use solely based on the operator that is being used. The choice
between floating point division or integer division is not influenced by the data types of the operandi.

>>>x =17.3
>>> y =2
>>>x //y
3.0

>>> vy // x
0.0
>>x/y
3.65

Remainder after integer division: the modulo operator (%)

In Python you can use the modulo operator (%) to determine the remainder after integer division. If both
operandi are integers, the result is itself an integer. As soon as one of the operandi is a float, the result will
be a ‘float.

>>> 83 9 10

3

>>> 83.0 % 10
3.0

>>> 83 % 10.0
3.0

>>> 83.0 % 10.0
3.0

Notation of floating point numbers

In Python, floating point numbers are written with a decimal dot, not with a comma. Commas are used by
Python to separate the arguments of a function or the elements of a compound data type.

>>> 3.14159 # floating point number
3.14159

>>> 3,14159 # tuple of two integers
(3, 14159)

Accurate definition of the number =«

An accurate definition of the number 7 can be found in the math module.

>>> import math
>>> math.pi
3.141592653589793

Square root

The square root of a number can be computed using the sqrt function from the math module.

>>> import math
>>> math.sqrt(121)
11.0

>>> math.sqrt (1234)
35.12833614050059

Because /= = z'/2 the power operator (**) can be used as well to compute the square root.

>>> 121 **x (1 / 2)
11.0

>>> 1234 **x 0.5
35.12833614050059

The cubic, fourth, root can be calculated as follows:

>>> 27 *x (1 / 3)
3.0

>>> 22 xx (1 / 4)
2.1657367706679937

Alarm clock

Determine the smallest value
The built-in function min can be used to determine the minimum of two values.

>>> min(7, 3)

3

>>> min(3.14, 7.45)
3.14

The same function can also be used to determine the minimum of multiple values.
>>> min(7, 3, 8, 19, 2, 12)
2

>>> min(3.14, 7.45, 17.35, 373.21, 2.34, 98.36)
2.34

Absolute value

The built-in function abs can be used to compute the absolute value of a number.

>>> abs (42)

42

>>> abs(-42)

42

>>> abs(3.14159)
3.14159

>>> abs(-3.14159)
3.14159

	General
	Formatted text: string interpolation

	Mercator projection
	Extra mathematical functionality: the math module
	Trigonometric functions from the math module

	Vis viva
	Floating point division versus integer division
	Remainder after integer division: the modulo operator (%)
	Notation of floating point numbers
	Accurate definition of the number \pi
	Square root

	Alarm clock
	Determine the smallest value
	Absolute value

