
General

Formatted text: string interpolation

When you need a controlled way to compose a string as a mix of fixed and variable fragments, it might be
handy to make use of string interpolation. An interpolated string is a regular string that is prefixed with
the letter f (in front of the opening single or double quote). As a result, interpolated strings are also called
f-strings.

An f-string serves as a kind of template, with each variable fragment indicated by a pair of curly braces ({}).
In between these curly braces you place an expression whose value will fill up the position of the variable
fragment in the resulting string.

For example, in the following code fragment we define two variables number1 and number2 whose sum we
want to output. We use string interpolation to output formatted text that contains the two individual terms
and the result of adding the two terms.
>>> number1 = 2
>>> number2 = 3
>>> print(f'The sum of {number1} and {number2} is {number1 + number2}.')
The sum of 2 and 3 is 5.

A pair of curly braces in an interpolated string is called a placeholder. Inside such a placeholder you cannot
only put an expression, but after a colon you can also specify how the value of that expression must be
formatted (read: how it needs to be converted into a fixed string). More details about the different ways to
specify this formatting can be found in The Python Standard Library.

Remainder after integer division: the modulo operator (%)

In Python you can use the modulo operator (%) to determine the remainder after integer division. If both
operandi are integers, the result is itself an integer. As soon as one of the operandi is a float, the result will
be a ‘float.
>>> 83 % 10
3
>>> 83.0 % 10
3.0
>>> 83 % 10.0
3.0
>>> 83.0 % 10.0
3.0

Extra mathematical functionality: the math module

It is an explicit design choice to keep the Python programming language as small as possible. However,
there are mechanism built into the language to extend the language with new functionality. When Python is
installed, a selection of these modules are shipped as well. These modules are referred to as The Python
Standard Library.

The math module is one of these modules from the The Python Standard Library. As you might derive from
its name, the math module adds some mathematical functionality to Python. Before you can start using this
functionality, however, you must first import the module. There are two ways in which this can be done.

The first way imports the module as a whole. After this has been done, you must prefix the names of variables,
functions or classes that are defined in the module with the name of the module and a dot if you want to use
them in your Python code.

1

https://www.python.org/dev/peps/pep-0498/
https://docs.python.org/3/library/string.html#string-formatting
https://docs.python.org/3/library/
https://docs.python.org/3/library/
https://docs.python.org/3/library/

>>> import math
>>> math.sqrt(16) # square root
4.0
>>> math.log(100) # natural logarithm
4.605170185988092
>>> math.log(100, 10) # log10
2.0
>>> math.pi # accurate value of pi
3.141592653589793

The second way only imports some specific names of variables, functions or classes in your Python code.
After this has been done, you can directly use these names without prefixing them.
>>> from math import sqrt, log, pi
>>> sqrt(16) # square root
4.0
>>> log(100) # natural logarithm
4.605170185988092
>>> log(100, 10) # log10
2.0
>>> pi # naccurate value of pi
3.141592653589793

We refer to The Python Standard Library for a complete overview of the variables and functions defined in
the math module.

Floating point division versus integer division

Python makes a clear distinction between floating point division (indicated by the operator /) and integer
division (indicated by the operator //). Floating point division always results in a float. However, with
integer division, the data type of the result depends on the data type of the operandi. If both operandi are
integers, the result is an integer as well. If one or two of the operandi are floats, the result is itself
afloat‘.
>>> x = 8
>>> y = 3
>>> z = 4
>>> x / y # floating point division of two integers
2.6666666666666665
>>> x // y # integer division of two integers
2
>>> float(x) // y # integer division of a float and an integer
2.0
>>> x / z # floating point division of two integers
2.0
>>> x // z # integer division of two integers
2

Python decides which kind of division to use solely based on the operator that is being used. The choice
between floating point division or integer division is not influenced by the data types of the operandi.
>>> x = 7.3
>>> y = 2
>>> x // y
3.0
>>> y // x

2

https://docs.python.org/3/library/math.html?highlight=math#module-math

0.0
>>> x / y
3.65

How does Dodona check floating point numbers

If you have to output a floating point number for a given assignment, without an explicit indication about
the exact number of decimal digits that has to be displayed on the output (without rounding or truncating),
Dodona will check by default that the number is accurate up to six decimal digits. As a result, it does not
really matter how many digits are shown on the output.

Where is the father?

Multiplication: operator *

Do not forget to use the operator * if you want to multiply two numbers with each other. In mathematics
it is commonplace to write multiplication without any operator. In this case, the notation xy is used for
example to indicate the product of x and y. Python forces you to write the multiplication explicitly, by using
the operator *.
>>> x = 6
>>> y = 7
>>> x * y
42
>>> xy
Traceback (most recent call last):
NameError : name 'xy' is not defined

TypeError: unsupported operand type(s) for

Double check if you have taken into account that the built-in function input always returns an integer. In
most cases it may be necessary to convert the result into an object with the appropriate data type. You may
use one of the built-in type conversion functions (int, float, str, . . .) to achieve this.
>>> age = input('How old are you? ')
How old are you? 3
>>> 10 + age
Traceback (most recent call last):
TypeError : unsupported operand type(s) for +: 'int' and 'str'
>>> 10 + int(age)
13

Specific information

This problem can be rewritten as a linear system with two equations in two variables. If we represent the
age of the mother (in months) as the variable m and the age of her son as the variable s, we can derive the
following two equations from the problem description:

• A mother is a years older than her son:
m = s + 12a

• b years from now, she will be c times his age:

m + 12b = c(s + 12b)

3

Note that we have immediately multiplied the values a and b by 12, because all time intervals are expressed
in months and the values a and b are initially given in years. As a result, we have to solve the following
system of equations for m and s

{
m = s + 12a

m + 12b = c(s + 12b)

We may for example substitute m from the first equation in the second equation so that we obtain the
following equality

s + 12a + 12b = c(s + 12b)

that does not include the variable m. If we solve this equation for s, we obtain

cs + 12bc = s + 12a + 12b

cs − s = 12a + 12b − 12bc

s(c − 1) = 12(a + b − bc)

s = 12(a + b − bc)
c − 1

Now that we have been able to determine the age of the son, we can substitute that value in the first equation
to obtain the age of the mother

m = s + 12a

Note: As an extra tip we advise you not to copy formulas directly from a PDF file. Copying from a PDF file
does not use the correct operators when they are pasted into Python source code.

Great-circle navigation

Output floats with a fixed number of decimal digits (rounded)

By default the built-in function print format floating point numbers using a large number of decimal digits.
However, sometimes you will want to print floating point numbers with a fixed number of decimal this. You
could try to use the built-in function round to achieve this, as it allows rouning of numbers up to a given
number of decimal digits.
>>> print(1 / 3)
0.3333333333333333
>>> print(round(1 / 3, 2))
0.33

The problem with this solution is that rounding errors due to the internal representation of floating point
numbers, may generate numbers that are not printed with the desired number of decimal digits.

A better solution makes use of the string method format to specify the number of decimal digits when
formatting floating point numbers as text. Inside a pair of curly braces that represents a placeholder in the
template string, you may specify how the value that fills up the placeholder must be formatted. This is done

4

by placing a so-called format specifier in between the curly braces. The format specifier itself is preceded by
a colon (:).

To format a value as a floating point number with a fixed number of decimal digits, you can use the format
specifier :.nf. Here, the letterf‘ indicates that the value must be formatted as a floating point number,
and the number n indicates the number of decimal digits. The following code shows, for example, how a
number can be formatted as a floating point number, rounded up to two decimal digits.
>>> print(f'{1 / 3:.2f}')
0.33

We refer to The Python Standard Library for more details about the use of format specifiers.

Trigonometric functions from the math module

The math module from the Python Standard Library defines a couple of trigonometric functions such
as the sine function (sin), the cosine function (cos) and the tangent function (tan). It’s important to
pay attention to the fact that these functions expect an angle expressed in radians, and not in degreees.
Luckily enough, the math module also defines functions to convert an angle expressed in degrees into radians
(radians) and vice versa (degrees).
>>> import math
>>> angle = 90
>>> radians = math.radians(angle)
>>> radians
1.5707963267948966
>>> radians == math.pi / 2
True
>>> math.cos(radians) # must evaluate to 0, but note the rounding error
6.123233995736766e-17
>>> math.sin(radians)
1.0

Cyclometric functions from the math module

The math module from the Python Standard Library defines a couple of cyclometric functions (or inverse
trigonometric functions) such as the arcsine function (asin), the arccosine function (acos) and the arctangent
function (atan or atan2; the main difference between these two is that the function atan2 takes into account
the quadrant in which the point is located). The domain of the arcsine and the arccosine functions is [−1, 1].
This means that these function only take floating point values from the interval [−1, 1]. As a result, you must
take care that rouding errors do not cause values outside this domain. The following example illustrates how
the detrimental effect of rounding errors can be remedied.
>>> import math
>>> value = 1.00001
>>> math.acos(value) # compute arccosine
Traceback (most recent call last):
ValueError : math domain error
>>> value = max(-1.0, min(value, 1.0)) # guarantee that value is in interval [-1, 1]
>>> value
1.0
>>> math.acos(value)
0.0

5

https://docs.python.org/3/library/string.html#string-formatting
https://docs.python.org/3/library/
https://docs.python.org/3/library/

	General
	Formatted text: string interpolation
	Remainder after integer division: the modulo operator (%)
	Extra mathematical functionality: the math module
	Floating point division versus integer division
	How does Dodona check floating point numbers

	Where is the father?
	Multiplication: operator *
	Specific information

	Great-circle navigation
	Output floats with a fixed number of decimal digits (rounded)
	Trigonometric functions from the math module
	Cyclometric functions from the math module

