
General

Infinite loops

Take care to avoid infinite loops. An infinite loop is a loop that never stops executing: in most of the cases it
concerns a while-loop where the statements inside the loop never take care to make the while-condition
False after some time. As an example, take a look at the following code snippet
>>> i = 0
>>> a = 0
>>> while i < 4:
... a += 1

Because the statement a += 1 will never cause the initial value of the variable i to become larger than or
equal to 4, the condition i < 4 will evaluate to True forever.

Tip: If you work with Eclipse, you known that a program that was started is still running if you observe a
red square in the top menu of the Console. If you click the red square, you force the program to stop.

Counting starts at zero

Computer scientists by default start counting from zero, not from one, and Python follows this tradition in
many of its design decisions. As an example, the built-in function range generates a sequences of successive
integers that starts at zero, if you only pass a single argument to the function. Here’s how you count to 5 in
Python
>>> for i in range(6):
... print(i)
...
0
1
2
3
4
5

If you want counting to start at another value, you can pass this value as an extra argument to the range
function.
>>> for i in range(1, 6):
... print(i)
...
1
2
3
4
5

However, it is considered a more Pythonic solution to write the above as
>>> for i in range(5):
... print(i + 1)
...
1
2
3

1



4
5

Premature abortion of loops

In Python you can use the statements break and continue to abort a loop before it has come to completion.
In general, however, these statements are considered bad programming style.

One situation where you may want a premature abortion of a loop occurs when you want to find a solution
by trying all possible cases, and stop as soon as one solution has been found. Instead of using break or
continue in this case, it is better to use an additional Boolean variable that indicates whether or not the
solution has already been found.
>>> found = False
>>> while not found:
... if (solution found): #solution found represents a condition
... found = True
...

As soon as the solution has been found (represented here by the fact that the condition solution found
evaluates to True), the variable found is assigned the value True. As a result, the while-loop ends the next
time the while-conditions is evaluated after the current iteration.

Read multiple lines from input

If you know in advance how many lines must be read from input, you may use the following strategy
>>> lines = 4
>>> for _ in range(lines):
... line = input()
... # process the line
...

If the number of lines that must be read from input is not known in advance, but you know for example that
the last line is an empty line, you may use the following strategy
>>> line = input()
>>> while line:
... # process the line
... line = input()
...

New York Times

Specific information

It is required to print the ‘sign’ of the increment between consecutive numbers. You can use this special
format string structure print(f"{x:+d}") to automatically print the correct sign (positive or negative) of
an integer x

2


	General
	Infinite loops
	Counting starts at zero
	Premature abortion of loops
	Read multiple lines from input

	New York Times
	Specific information


