
Fuse

Specific information

You can make use of a flood fill algorithm for the implementation of the function group.

We start with a set of points S and a list of points L. The set S will contain all positions in the same group,
the list L will contain all the points we still have to look at.

Firstly we add the starting position (r, k) to S and L. Next we repeat the following procedure until L is
empty:

• randomly choose a position f from L
• for each neighbor b of f with the same value

– if S does not contain b
∗ add b to L
∗ add b to S

• remove f from L

If L is empty, S contains all positions within the same group as the starting position.

Figure 1: Flood fill

General

Sets and dictionaries in doctests

The elements of a set and the keys of a dictionary do not have a particular order. This means that two sets
or two dictionaries are equal, irrespective of the order in which the elements/keys have been added to the

1



set/dictionary.
>>> {1, 3, 2, 4} == {4, 3, 1, 2}
True
>>> {'A': 1, 'B': 2, 'C': 3} == {'B': 2, 'A': 1, 'C': 3}
True

When working with doctests, however, sets and dictionaries might cause you trouble. The reason for this
problem is that in comparing expected and generated results, doctests proceed as follows: the expected
result is extracted from the doctest as a string, and the value returned by a function or resulting from the
evaluation of an expression is converted to a string. These two strings are then compared with each other (as
a string, not as a set or a dictionary). In comparing strings, the order of the characters is important, and
that’s what’s causing the trouble.
>>> d1 = {'A': 1, 'B': 2, 'C': 3}
>>> s1 = str(d1) # executed on computer 1
>>> d1
"{'A': 1, 'C': 3, 'B': 2}"
>>> d2 = {'A': 1, 'B': 2, 'C': 3}
>>> s2 = str(d2) # executed o computer 2
"{'A': 1, 'B': 2, 'C': 3}"
>>> d1 == d2
True
>>> s1 == s2
False

Although dictionaries d1 and d2 have the same value, the doctest indicates that the string representations
of these two dictionaries are different. The conversion of a set/dictionary to a string may depend on the
computer that executes the code, the Python version used on that computer, and might even differ if you
do repeat the same conversion on the same computer using the same Python version. The problem can be
solved by making sure the doctests do not compare strings, but directly compare sets or dictionaries. For
example, if a doctest initially looks like
>>> aFunction(parameter1, parameter2)
{'A' : 1, 'B': 2, 'C': 3}

you may better rewrite this doctest as
>>> aFunction(parameter1, parameter2) == {'A' : 1, 'B': 2, 'C': 3}
True

This problem never occurs on Dodona, since its way of testing the source code never converts return values
or results of expression evaluations into strings, but directly compares the resulting objects.

Assign values to keys in a dictionary

When associating a value with a dictionary key, you may have to take into account that the dictionary may
or may not already associate a value to this key. It is often the case that you have to add a new key/value
pair in case the key was not used in the dictionary, and thay you have to update an existing key/value pair
in case the key was already used in the dictionary.

This technique can to be used, for example, for the construction of frequency tables. A frequency table is a
dictionary that maps each key onto an integer that indicates how often the key occurs in a container object
(e.g. a list, a tuple or a set).
>>> aList = ['R', 'S', 'E', 'E', 'N', 'T', 'E', 'I', 'L', 'D', 'I']
>>> frequentietabel(aList)
{'E': 3, 'S': 1, 'D': 1, 'N': 1, 'T': 1, 'R': 1, 'L': 1, 'I': 2}

2



Figure 2: update dictionary

The above technique can be used to implement the function frequencyTable.
def frequencyTable(aList):

freq = {} # create empty dictionary
for element in aList:

if element not in freq:
freq[element] = 0 # add element to dictionary with initial value 0

freq[element] += 1 # update value associated with element

In this case you could have also used the dictionary method get. This method returns the value associated
with a given key in the dictionary. In contrast to indexing dictionaries using square brackets to fetch the
value associated with a given key, the get method will never result in a KeyError in case the key does not
occur in the dictionary. Instead, the get method by default returns the value None if the key does not occur
in the dictionary. If you pass a value to the second optional parameter, this value will be returned as the
default value in case the get method does not find the key in the dictionary.
>>> d = {'A': 1, 'B': 2, 'C': 3}
>>> d['A']
1
>>> d.get('A')
1
>>> d['D']
Traceback (most recent call last):
KeyError : 'D'
>>> d.get('D') # returns the value None
>>> d.get('D', 0)
0

Dictionaries gebruiken om if statements te vermijden

Sometimes you might need extremely long if-elif-else statements where each clause exactly the same
thing, except for a different value of one variable. In these cases is it usually better to lookup the value of
that variable in a dictionary, and work with its associated value.
>>> if x == 'A':
... y += 3
... elif x == 'B':
... y += 1
... elif x == 'C':
... y += 7

3



This code snippet can be written must shorter by using a dictionary, whose keys are the possible values of x
and whose corresponding values are the values that need to be added to y.
>>> mapping = {'A': 3, 'B': 1, 'C': 7}
>>> y += mapping[x]

Set operators

In Python it is really easy to compute the union, the intersection and the difference of two sets.
>>> set1 = {'A', 'B', 'C'}
>>> set2 = {'C', 'D', 'E'}
>>> set1 & set2 # intersection
{'C'}
>>> set1 | set2 # union
{'A', 'B', 'C', 'D', 'E'}
>>> set1 - set2 # difference
{'A', 'B'}
>>> set2 - set1 # difference is assymetric
{'D', 'E'}

4


	Fuse
	Specific information

	General
	Sets and dictionaries in doctests
	Assign values to keys in a dictionary
	Dictionaries gebruiken om if statements te vermijden
	Set operators


