
General

Custom comparison operators

To explain how Python must compare two objects of a self-defined data type (class), a specific implementation
for the comparison operators must be provided. This can be done by overloading the following magical
methods:

method operator
__lt__ <
__le__ ≤
__gt__ >
__ge__ ≥
__eq__ =
__ne__ 6=

Please note that in most cases you’ll have the opportunity to define most of these comparison operators based
on the other comparison operators. For example, two object are different if they are not equal.

Gebruik van self

If you work with classes, you need to make a distinction between two kinds of variables. There are object
properties that can be referenced in all class methods and there are local variables of methods that are only
acccessible in the method where they are defined. Only the names of the object properties need to be prefixed
with self. Variables that are local to a method (the local variables) do not need to be prefixed with self,
and its considered very bad programming style if you do so.

Initialize object properties in intialisation method

Before you start with the implementation of a class, you must first determine which properties the objects of
the class will have. Each of these properties will correspond to a variable that is prefixed with self.. These
variables describe the internal state of the individual objects and can be addressed in all class methods. It’s
always a good idea to define the object properties in the __init__ method, where you assign them an initial
value.

1


	General
	Custom comparison operators
	Gebruik van self
	Initialize object properties in intialisation method


