
Complementary sequences

Zipper method
Traverse the elements of two or more iterable objects simultaneously

If you want to traverse the elements of two or more iterable objects (objects of compound data types that
have an associated iterator) simultaneously, you do this using the built-in function zip. This function returns
an iterator that initially returns a tuple containing the first elements of all iterable objects passed to the
function zip, then a tuple containing all second elements of those iterable objects, and so on.

Say, for example, that you can to add two lists element-wise, thereby creating a new list whose i-th element
is the sum of the i-th elements of the two original lists. This can be done in the following way.
>>> first = [1, 2, 3]
>>> second = [4, 5, 6]
>>> added = []
>>> for term1, term2 in zip(first, second):
... added.append(term1 + term2)
...
>>> added
[5, 7, 9]

This can also be written a bit shorter by making use of a list comprehension.
>>> first = [1, 2, 3]
>>> second = [4, 5, 6]
>>> added = [term1 + term2 for term1, term2 in zip(first, second)]
>>> added
[5, 7, 9]

The iterator stops (raises a StopIteration exception) as soon as one of the iterable objects is exhausted. If
you want to traverse two or more iterable objects simultaneously until the last of those objects is exhausted,
you may do this using the function zip_longest from the itertools module.

Diffy
One element tuples

One-element tuples look like:
1,

The essential part of the notation here is the trailing comma. As for any expression, parentheses are optional,
so you may write one-element tuples like:
(1, )

But it is the comma, not the parentheses, that define the tuple. Take a look at the following example:
>>> sequence = (3) # an integer
>>> reeks
3
>>> isinstance(reeks, tuple)
False
>>> isinstance(reeks, int)
True
>>> reeks = (3, ) # a tuple

1



>>> isinstance(reeks, tuple)
True

The comma is essential, because Python otherwise interprets the notation (object) as the object itself.

Repeating the elements of a tuple

Just as strings, tuples can also be multiplied with a positive integer. This creates a new tuple that contains a
repetition of the elements in the original tuple.
>>> tuple = (2, 3)
>>> tuple * 4
(2, 3, 2, 3, 2, 3, 2, 3)
>>> element = (0, )
>>> 6 * element
(0, 0, 0, 0, 0, 0)

Energy crisis in New Zealand
Initialize fixed-sized lists with a default value

If you want to create a list with a fixed size n whose elements all have the same value x, you don’t need to
use a for-loop or a list comprehension. The simple solution is to write [x] * n.
>>> [' '] * 3
[' ', ' ', ' ']
>>> [1] * 5
[1, 1, 1, 1, 1]

Not that this multiplication does not make copies of the object x, but results in a list whose elements all
point to the same object x. This is definitely important in case x is a multable object.
>>> aList = [[1, 2]] * 4
>>> aList
[[1, 2], [1, 2], [1, 2], [1, 2]]
>>> aList[0][1] = 666
>>> aList
[[1, 666], [1, 666], [1, 666], [1, 666]]
>>> aList[3].append(42)
>>> aList
[[1, 666, 42], [1, 666, 42], [1, 666, 42], [1, 666, 42]]

General
Controle of bepaalde voorwaarden gelden

Sometimes it is needed to explicitly check if certain conditions hold when executing part of your source code,
and the program needs to respond if one of the conditions is not met. One of the easiest ways this can be
done in Python is by using the assert statement.
>>> x = 2
>>> y = 2
>>> assert x == y, 'the values are different'
>>> x = 1
>>> assert x == y, 'the values are different'
Traceback (most recent call last):

2



File "<stdin>", line 1, in <module>
AssertionError : the values are different

The general syntax of the assert statement is

assert <condition>, <message>

The assert statement checks whether or not the condition is met. If this is not the case, an AssertionError
will be raised with the message that is given at the end of the assert statement. In case this exception is
not caught elsewhere in the code (which will always be the case in this course), the execution of the codes
halts at the point where the AssertionError was raised (runtime error).

3


	Complementary sequences
	Zipper method
	Traverse the elements of two or more iterable objects simultaneously

	Diffy
	One element tuples
	Repeating the elements of a tuple


	Energy crisis in New Zealand
	Initialize fixed-sized lists with a default value

	General
	Controle of bepaalde voorwaarden gelden


