
Necklace
Operator overloading with custom types

If Python needs to evaluate the following expression
o1 + o2

it converts the expression into
type(o1).__add__(o1, o2)

This way, you can specify how the +-operator is evaluated if the object o1 belongs to a custom type (defined
using the class keyword). This is called operator overloading. However, operator overloading is not restricted
to the +-operator. In fact, Python converts each built-in operator (like mathematical operators and comparison
operators) into calling a method on the left operand o1 whose name has been fixed by the Python developers
(all names begins and ends with a double underscore). Here’s an overview of some of these magic methods:

operator method
+ __add__
- __sub__
* __mul__
/ __truediv__
// __floordiv__
** __pow__

Operator overloading initially converts the evaluation of an operator into calling a magic method on the left
operand o1. But what if the class of the left operand o1 does not define the magic method for object of type
o2? In that case an exception is thrown, and Python makes a second attempt to call another magic method
(whose name has an extra letter r in front) on the right operand o2.

For example, if the addition we observed above fails when calling the __add__ method on the left operand
o1, Python attempts to call the following method on the right operand o2
type(o2).__radd__(o2, o1)

Note that the name of the method has become __radd__ instead of __add__, and that the order of the
arguments has been inverted. This is important for asymmetric operations.

Returning a reference to the current object

Some objects return a reference to themselves after a change. As an example we implement the Tic-Tac-Toe
game:
class TicTacToe:

def __init__(self):
self.grid = [

[None, None, None],
[None, None, None],
[None, None, None]

]
self.player = 'O'

def play(self, i, j):
self.grid[i][j] = self.player
self.player = 'O' if self.player == 'X' else 'X'
return self

1

This allows us to play the game as follows:
>>> game = TicTacToe().play(1, 1).play(0, 0).play(0, 1).play(1, 0)
>>> game.grid
[

['X', 'X', None],
['O', 'O', None],
[None, None, None]

]

The important part here is the return self.

Data compression
Specific information
To decode a bitstring b you can execute the following procedure until the bitstring b is the empty string:

• find the shortest prefix p of the bitstring b that represents a symbol s that can be decoded
• add the symbol s to the decoded message
• remove the prefix p from the start of the bitstring b

Racetrack Playa
Specific information
Figure 1 shows what happens if a block slides.

Figure 1 shows what happens if a block tilts.

2

Figure 1: Slide

3

Figure 2: Tilt

4

	Necklace
	Operator overloading with custom types
	Returning a reference to the current object

	Data compression
	Specific information

	Racetrack Playa
	Specific information

