
General
Controle of bepaalde voorwaarden gelden

Sometimes it is needed to explicitly check if certain conditions hold when executing part of your source code,
and the program needs to respond if one of the conditions is not met. One of the easiest ways this can be
done in Python is by using the assert statement.
>>> x = 2
>>> y = 2
>>> assert x == y, 'the values are different'
>>> x = 1
>>> assert x == y, 'the values are different'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AssertionError : the values are different

The general syntax of the assert statement is

assert <condition>, <message>

The assert statement checks whether or not the condition is met. If this is not the case, an AssertionError
will be raised with the message that is given at the end of the assert statement. In case this exception is
not caught elsewhere in the code (which will always be the case in this course), the execution of the codes
halts at the point where the AssertionError was raised (runtime error).

Kaprekar series
The string method join

The string method join can be used to concatenate all string in an iterable object (e.g. a list) into a single
string. This is done by concatenating all strings in the iterable object using a separator, which is the string
on which the string method join is called.
>>> aList = ['a', 'b', 'c']
>>> ' '.join(aList)
'a b c'
>>> ''.join(aList)
'abc'
>>> '---'.join(aList)
'a---b---c'
>>> ' - '.join(aList)
'a - b - c'

Sorting lists

Python supports two ways to rearrange the elements of a list from the smallest to the largest. You can either
call the list method sort on the list, or you can pass the list to the built-in function sorted. However, there
is an important different between these two alternatives. The list method sort modifies the list in place (and
does not return a new list), whereas the built-in function sorted returns a new list whose elements are sorted
from the smallest to the largest.
>>> aList = [4, 2, 3, 1]
>>> aList.sort()
>>> aList
[1, 2, 3, 4]
>>>
>>> aList = [4, 2, 3, 1]

1



>>> sorted(aList)
[1, 2, 3, 4]

Sort in descending order

By default the list method sort and the built-in function sorted sort the elements of a list in ascending
order. Both function also have an optional parameter reverse to which the value True can be passed to
have the elements arranged in descending order.
>>> aList = [1, 2, 3, 4]
>>> aList.sort(reverse=True)
>>> aList
[1, 2, 3, 4]
>>>
>>> aList = [4, 2, 3, 1]
>>> sorted(aList, reverse=True)
[1, 2, 3, 4]

Partitioning the phone book
Check data types with isinstance

To check whether or not a given object o has a given data type t, you can use the built-in function type(o)
to see if it returns the data type t for the object o. However, it is better (more pythonic) to use the built-in
function isinstance(o, t) in this case. This function returns a Boolean value that indicates whether or
not the object o has data type t or a date type that is derived from the data type t.
>>> type(3) == int
True
>>> isinstance(3.14, int)
False
>>> isinstance(3.14, float)
True
>>> isinstance([1, 2, 3], list)
True

To check whether or not a given object o has one of multiple types, the following syntax can be used. All
posible valid types are hereby listed in a tuple.
>>> isinstance(3, (str, int))
True
>>> isinstance('a', (str, int))
True
>> isinstance(['a'], (str, int))
False

2


	General
	Controle of bepaalde voorwaarden gelden

	Kaprekar series
	The string method join
	Sorting lists
	Sort in descending order

	Partitioning the phone book
	Check data types with isinstance


