
General
Assigning functions to variables

In Python functions are themselves object of the data type function, so they can be assigned to variables
just like any other object. This is handy if you have to code fragments that are exactly the same, except for
the fact that at some point you need to call another function.

Say, for example, that we want to write a program that first needs to print all words containing the letter a
from a given list of words, and then also needs to print all words containing the letter b from the same list of
words. We could do this in the following way
>>> words = ['apple', 'banana', 'berry']
>>>
>>> def contains_a(word):
... return 'a' in word
...
>>> def contains_b(word):
... return 'b' in word
...
>>> for word in words:
... if contains_a(word):
... print(word)
...
apple
banana
>>> for word in words:
... if contains_b(word):
... print(word)
banana
berry

We could slightly rewrite the two for loops in the above code fragments
>>> func = contains_a
>>> for word in words:
... if func(woord):
... print(word)
...
apple
banana
>>> func = contains_b
>>> for word in words:
... if func(word):
... print(word)
banana
berry

so that we twice get exactly the same for loop. Because we want to avoid code duplication (we never want
to program the exact same code twice), we can rewrite this by introducing another for loop that iterates
over both functions
>>> functions = [contains_a, contains_b]
>>> for func in functions:
... for word in words:
... if func(word):
... print(word)

1

apple # generated during first iteration (func == contains_a)
banana
banana # generated during second iteration (func == contains_b)
berry

Colorful fruits
The random module

The random module from the The Python Standard Library can be used to add randomness to your Python
code. Here’s a selection of the functions implemented by this module.

function short description
random() returns a random floating point number from the range [0, 1[
randint(a, b) returns a random integer from the range [a, b]
choice(s) returns a random element from the non-empty sequence s
sample(s, k) returns k distinct elements from the sequence or set s
shuffle(l) randomly shuffles the sequence s in place

Here are some examples.
>>> import random

>>> random.random()
0.954131645221452
>>> random.random()
0.3548429482674793

>>> random.randint(3, 10)
5
>>> random.randint(3, 10)
8

>>> aList = ['a', 'b', 'c']
>>> random.choice(aList)
'b'
>>> random.choice(aList)
'a'
>>> aList
['a', 'b', 'c']

>>> random.sample(aList, 2)
['a', 'c']
>>> random.sample(aList, 2)
['b', 'a']
>>> aList
['a', 'b', 'c']

>>> random.shuffle(aList)
>>> aList
['c', 'a', 'b']

2

https://docs.python.org/3/library/random.html
https://docs.python.org/3/library/

Friday the 13th
The datetime module

The datetime module from the The Python Standard Library defines a couple of new data types that can
be used to represent dates (datetime.date objects) and periods of time (datetime.timedelta objects) in
Python code. Here are some examples.
>>> from datetime import date
>>> birthday = date(1990, 10, 3)
>>> birthday = date(day=3, month=10, year=1990)
>>> birthday.day # day is a property
3
>>> birthday.month # month is a property
10
>>> birthday.year # year is a property
1990
>>> birthday.weekday() # weekday is a method !!
2
>>> today = date.today()
>>> today
datetime.date(2015, 11, 10) # executed on October 11th, 2015
>>> from datetime import timedelta
>>> tomorrow = today + timedelta(1)
>>> tomorrow
datetime.date(2015, 11, 11)
>>> difference = tomorrow - today
>>> type(difference)
datetime.timedelta
>>> difference.days
1

None as default value

If you want to define a function that has an optional parameter, you always need to assign a default value to
that parameter. However, it may happen that this default value is not known when the function is defined,
and can only be determined at run-time (when the function is called). This is, for example, the case when the
default value itself depends on argument that are passed to other parameters. In this case, it’s a good idea
to assign the value None as the default value when defining the function, and to assign a computed default
value in the body of the function in case the value None was assigned to the optional parameter (meaning: no
explicit value was passed to this parameter).
def func(first, second=None):

if second is None:
assign the same value to the second parameter that was passed as an
argument to the first (mandatory) parameter, in case no explicit value
was passed to the second argument when calling the function
second = first

...

This could not be solved in the following way
def func(first, second=first):

...

3

https://docs.python.org/3/library/datetime.html
https://docs.python.org/3/library/

because at the time the function is defined, the parameter first has not been assigned a specific value. This
is the same thing as using a variable that has not yet been defined.

You should also use None as a default value, if the actual default value that you want to assign has a mutable
data type. It is recommended not to write
def func(first, second=[]):

NOTE: in this case a single empty list is created at the time the function
is defined; because lists are mutable, the list can be modifed in
place each time the function is called; usually, this is not the
expected behavior

...

but to implement this in the following way
def func(first, second=None):

assign empty list as a default value
NOTE: now a new empty list is created each time the function is called, so
this list is specific for that function call
if second is None:

second = []

...

If you want to assign a default value to a parameter that is fixed at the time the function is defined, and that
has an immutable data type (int, bool, string, tuple, . . .), you may safely assign the default value in the
traditional way.
def func(first, second=42):

...

4

	General
	Assigning functions to variables

	Colorful fruits
	The random module

	Friday the 13th
	The datetime module
	None as default value

