
General
Copy text file to PyCharm

If you want to locally test your solution for an assignment using text files, you must also make sure to have a
local copy of the text files. Otherwise the test cases of the doctest will not be able to access these text files.
The text files that are used in a given doctest are always linked in the description on top of the doctest. You
can inspect the content of these text files in your browser by clicking this link.

The most general procedure to obtain a local copy of these text files in PyCharm goes as follows:

• open the text file in your browser
• copy the file content to the clipboard (CTRL-A + CTRL-C)
• create a new text file in Pycharm

– right click the directory that needs to contain the text file (you must make sure that the text file
is in the same directory as your Python script)

– chose the menu item New and then the menu item File
– enter the correct name of the file; make sure that the file extension must also be given (usually

.txt)
• paste the content of the clipboard into the file (CTRL-V)

The following screenshot shows you the way.

Figure 1: menu new file

If you submit a solution to Dodona, the platform will make sure that the necessary text files are in the same
directory as the Python script.

Separatly process the first line of a text file

When processing text files, it may well happen that the first line of the text file plays a different role than the
other lines in the file (e.g. a header line). In these case, you may want to process the first line of the file
separate from the other lines of the file.

Say, for example, that we have the following text file.

first

1



second
third

You can read and process the first line of this file separate from the next lines in the file in the following way.
>>> infile = open('filename.txt', 'r')
>>> firstLine = infile.readline()
>>> firstLine
"first \n"
>>> otherLines = []
>>> for line in infile:
... otherLines.append(line)
>>> otherLines
["second\n", "third\n"]

It’s important to know that Python by default never iterates of the same line twice. If you need to process
the lines of a file multiple times, you may close the file after the first iteration (using the built-in function
close) and open it again to start a second iteration (using the built-in function open). As an alternative,
you can use the method seek on an opened file object to put the file pointer back at the start of the file (or
at any other position in the file).

Newlines when reading lines from text files

If Python needs to read the next line from a text file, it will continue reading until the first newline character
('\n') or the end of the file is reached. The last character of the line that was read from the file will therefore
usually be a newline (unless the last line of the file did not end in a newline).

The string method rstrip can be used to remove the trailing newline at the end of a line. In case this
method is called without any arguments, all whitespace characters (spaces, tabs and newlines) at the end of
the line will be removed. To make sure that only the newline is removed from the end of the line, you may
pass the newline character as an argument to the rstrip method.
>>> line = infile.readline()
>>> line
'This is the next line in the file. \n'
>>> line.rstrip('\n')
'This is the next line in the file.'

Output results to a file

The built-in function print can be used to write the string representation of a result to a file. This can be
done by making use of the optional parameter file of the function print.

By default, the function print will write the result to the special file sys.stdout (the default value of the
parameter file) that for example might be attached to the Console window of PyCharm. The same effect
can be obtained by passing the value None to the parameter file.

By passing a file object that was opened for writing to the parameter file of the function print, the string
representation of the result is written to this file.
>>> line1 = 'This is the first line.'
>>> line2 = 'This is the second line.'
>>> print(line1)
This is the first line.
>>> print(line2, file=None)
This is the second line.

>>> outfile = open('output.txt', 'w')

2



>>> print(line1, file=outfile)
>>> print(line2, file=outfile)
>>> outfile.close()
>>> infile = open('input.txt', 'r')
>>> infile.readline()
'This is the first line. \n'
>>> infile.readline()
'This is the second line. \n'
>>> infile.readline()
''

String representation of tabs

The character that represents a tab in the ASCII table, may be represented in a Python string as '\t'.

3


	General
	Copy text file to PyCharm
	Separatly process the first line of a text file
	Newlines when reading lines from text files
	Output results to a file
	String representation of tabs



