General

Custom comparison operators

To explain how Python must compare two objects of a self-defined data type (class), a specific implementation
for the comparison operators must be provided. This can be done by overloading the following magical
methods:

method operator
It <
e <
gt >
__ge >
eq =
ne #

Please note that in most cases you’ll have the opportunity to define most of these comparison operators based
on the other comparison operators. For example, two object are different if they are not equal.

The format specifier !'r

Python has two built-in functions that can be used to convert an object to a string: str and repr. By
default, Python uses the built-in function str to convert an object to a string in an f-string and when using
the string method format. If you want to use the built-in function repr instead, you can either explicitly
call the function or use the format specifier 'r.

>>> course = 'programmming'

>>> str(course) # str (expliciet)
'programmming '

>>> repr(course) # repr (explictiet)
"'programmming'"

>>> cursus # repr (implictiet)
'programmming '

>>> f'The name of the course is {course}.' # str (impliciet)
'The name of the course is programmmeren. '

>>> f'The name of the course is {repr(course)}.' # repr (ezpliciet)
"The name of the course %s 'programmmeren'."

>>> f'The name of the course is {course!r}.' # repr (implictiet)

"The name of the course is 'programmmeren'."

Operator overloading with custom types

If Python needs to evaluate the following expression

ol + o2

it converts the expression into

type(ol) .__add__(ol, 02)

This way, you can specify how the +-operator is evaluated if the object o1 belongs to a custom type (defined
using the class keyword). This is called operator overloading. However, operator overloading is not restricted
to the +-operator. In fact, Python converts each built-in operator (like mathematical operators and comparison
operators) into calling a method on the left operand o1 whose name has been fixed by the Python developers
(all names begins and ends with a double underscore). Here’s an overview of some of these magic methods:

operator method

+ __add__

- __sub__

* __mul__

/ __truediv__
// __floordiv__
* % __pow__

Operator overloading initially converts the evaluation of an operator into calling a magic method on the left
operand ol. But what if the class of the left operand o1 does not define the magic method for object of type
027 In that case an exception is thrown, and Python makes a second attempt to call another magic method
(whose name has an extra letter r in front) on the right operand o02.

For example, if the addition we observed above fails when calling the __add__ method on the left operand
ol, Python attempts to call the following method on the right operand o2

type(02) .__radd__(02, ol)

Note that the name of the method has become __radd__ instead of __add__, and that the order of the
arguments has been inverted. This is important for asymmetric operations.

Returning a reference to the current object

Some objects return a reference to themselves after a change. As an example we implement the Tic-Tac-Toe
game:
class TicTacToe:
def __init__(self):
self.grid = [
[None, None, None],
[None, None, None 1,
[None, None, None]
]
self.player = 'O’

def play(self, i, j):
self.grid[i] [j] = self.player
self.player = '0' if self.player == 'X' else 'X'
return self

This allows us to play the game as follows:
>>> game = TicTacToe().play(1, 1).play(0, 0).play(0, 1).play(i, 0)
>>> game.grid
[
['x', 'X', Nome],
['0', '0O', Nomne],
[None, None, None]

]

The important part here is the return self.

	General
	Custom comparison operators
	The format specifier !r
	Operator overloading with custom types
	Returning a reference to the current object

