
General
Conditional expressions

Use a conditional statement if you want the value that must be assigned to a variable to depend on a
certain condition. Say, for example, that you work with a variable x that refers to the length of a person (in
centimeters), and that you want to assign the value 'tall' to the variable length if x > 185, and the value
'short' otherwise. Using a conditional statement, this can be done in the following way.
>>> x = 100
>>> if x > 185:
... length = 'tall'
... else:
... length = 'short'
...
>>> length
'small'

>>> x = 190
>>> if x > 185:
... length = 'tall'
... else:
... length = 'short'
...
>>> length
'large'

The same result can be obtained using an if-else-expression (also called a conditional expression). In
contrast with a conditional statement, this is an expression (that evaluates to a value) and not a statement.
As a result, you may use conditional expressions at the right-hand side of an assignment statement. Using
conditional expressions, the above interactive session can be written much shorter as
>>> x = 100
>>> length = 'tall' if x > 185 else 'short'
>>> length
'small'

>>> x = 190
>>> length = 'tall' if x > 185 else 'short'
>>> length
'large'

Conversion of values to Boolean values

It is generally considered a better programming style (more pythonic) to rewrite the condition in the following
code snippet
if x != 0:

pass

in short as
if x:

pass

This is possible, because the evaluation of the condition in an if statement or a while statement, implicitly
converts the expression into a Boolean value (bool). For most data types, all values are converted to the
Boolean value True, except for a single value that is converted to False:

1



• for integers (int) only 0 is converted to False
• for floats (float) only 0.0 is converted to False
• for strings (str) only the empty string ('') is converted to False
• for lists (list) only the empty list ([]) is converted to False
• . . .

As a result, you will encounter this shorthand notation very often in code examples that you find in books
or online. So, even if you find the longer notation more readable, it is still necessary to understand the
shorthand notation when trying to understand code examples that make use of it.

Also note that it is quite useless to write
if found == True:

pass

as the variable found already references a Boolean value. Again, in this case it is shorter (and more pythonic)
to write
if found:

pass

Assignment vs. equality test

The syntax of an assignment statement uses a single equal sign (=), where an equality test (check whether
two objects have the same value) uses two successive equal signs (==). To check if the value of the variable x
equals the integer 2, you write
>>> if x == 2: # correct
... pass

and not
>>> if x = 2: # wrong

File "<myscript.py>", line 1
if x = 2:

^
SyntaxError : invalid syntax

Non-defined variables

Python issues a runtime error if you try to fetch the value of an object referenced by a variable that has not
been defined earlier in your source code (no object has been assigned to this variable). This happens for
example in the following code fragment
>>> x = 4
>>> if x < 3:
... var = 'ok'
...
>>> print(var)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError : name 'var' is not defined

where the print statement issues a runtime error that mentions the fact that the variable var could not be
found in the namespace. If you carefully examine the code fragment, you’ll see that the variable var is not
assigned a value in case the value of x is larger than 3 (which is the case in this example).

2



Goldilocks principle
Check if a number is between two limits

Check if a value (of a variable) is within a certain interval by using a composite Boolean expression. For
example, if you want to check whether the number x is in the interval ]a, b[, you can use the following Boolean
expression
>>> a < x and x < b

In mathematics, this condition would be written as a < x < b, and Python can use the same kind of shorthand
notation.
>>> a < x < b

This clearly shows that Guido Van Rossum, who invented the Python programming language, was a trained
mathematician. Equally, the condition a ≤ x ≤ b — where the limits are included in the interval — can be
written using the same shorthand notation.
>>> a <= x <= b

Formula one
Rounding up floats

The math module defines a function ceil that can be used to round up floating point numbers (float). This
function returns an integer (int).
>>> import math
>>> math.ceil(3.2)
4
>>> math.ceil(3.7)
4

The math module also defines the complementary function floor that can be used to round down floating
point numbers (float). Use the built-in function round for the classic way of rounding floating point numbers.

Rock-paper-scissors-lizard-Spock
Testing if the value of a variable belongs to a fixed set of options

The following conditional statements have a logical error in checking whether it is weekend or a working day
on a given weekday. Actually, the condition will always be True, suggesting that it is weekend all the time.
>>> weekday = 'sunday'
>>> 'weekend' if (weekday == 'saturday' or 'sunday') else 'working day' # WRONG!!
'weekend'

>>> weekday = 'monday'
>>> 'weekend' if (weekday == 'saturday' or 'sunday') else 'working day' # WRONG!!
'weekend'

The reason things go wrong here, is that the condition is composed out of two smaller conditions, being
weekday == 'saturday' and 'sunday'. The second condition is always True, since any string is True
except for the empty string that is False in Boolean context. The correct way of formulating the composed
condition is
>>> weekday = 'sunday'
>>> 'weekend' if (weekday == 'saturday' or weekday == 'sunday') else 'working day'

3



'weekend'

>>> weekday = 'monday'
>>> 'weekend' if (weekday == 'saturday' or weekday == 'sunday') else 'working day'
'working day'

Note the repetition of the variable name in the condition.

Avoid multiple print statements

It is always a good idea to avoid excessive use of print statements, in order not to clutter your source code.
As such, it becomes much easier to track what exactly will be printed and how the output is formatted.

Say, for example, that you have the following source code
>>> x = 3
>>> if x < 5:
... print('less than 5')
... else:
... print('more than 5')
...
'less than 5'

This code always prints a single line, and so it is better to rewrite this source code using a single print
statement
>>> x = 3
>>> if x < 5:
... result = 'less'
... else:
... result = 'more'
...
>>> print(f'{result} than 5')
'less than 5'

4


	General
	Conditional expressions
	Conversion of values to Boolean values
	Assignment vs. equality test
	Non-defined variables


	Goldilocks principle
	Check if a number is between two limits

	Formula one
	Rounding up floats

	Rock-paper-scissors-lizard-Spock
	Testing if the value of a variable belongs to a fixed set of options
	Avoid multiple print statements



