
General
Iterate the positions and the elements of a collection

The built-in function enumerate can be used to fetch an iterator for a collection (iterable: object of compound
data types such as str, list, tuple, files, . . . ) that both returns the position and the next element in the
collection. The example below illustrates how this can be used to simultaneously traverse the characters of a
string (str) and their positions.
>>> for index, character in enumerate('abc'):
... print(f'index: {index}')
... print(f'character: {character}')
...
index: 0
character: a
index: 1
character: b
index: 2
character: c

This can also be used to simultaneously traverse the characters at corresponding positions of two strings.
>>> first = 'abc'
>>> second = 'def'
>>> for index, character in enumerate(first):
... print(f'{character}-{second[index]}')
...
a-d
b-e
c-f

However, in this case it is better to use the built-in function zip, which is especially equipped to traverse
multiple iterables at once.
>>> first = 'abc'
>>> second = 'def'
>>> for character1, character2 in zip(first, second):
... print(f'{character1}-{character2}')
...
a-d
b-e
c-f

Working with floating point numbers in doctests

If a function returns a floating point number, this might give trouble when testing the correctness of the
function using a doctest. This is caused by the fact that doctests perform an exact match between the string
that represents the result in the doctest, and the result that is printed or returned by the function. In order
to do this, the result of the function is first converted into a string. In comparing these two strings, doctests
thus do not take into account the possibility of rounding errors that might occur when working with floating
point numbers. These rounding errors are a consequence of the limited precision with which computers can
represent real-valued numbers.
>>> 0.1
0.1
>>> 0.1 + 0.1 + 0.1
0.30000000000000004

1



If in executing a doctest the expected output (a string) does not exactly match the string representation that
is returned by the function, the doctest will consider the result as incorrect.

Dodona does take into account rounding errors when working with floating point numbers. Unless otherwise
stated in the assignment, Dodona will check if the result is correct up to six decimal digits for functions that
return floating point numbers (either directly or as elements of collections). This more or less comes down to
rewriting a doctest according to the following strategy.
def multiply(x):

"""
>>> abs(multiply(0.1) - 0.3) < 1e-6
True
"""

return 3 * x

Passing mutable objects to functions

If you pass a mutable object to a function, the function may modify the object in place. This might be an
explicit goal of the function, but sometimes it is not desirable to modify values that are passed to a function
while the function is being executed.

Say, for example, that we pass a list to a function. What we actually pass to the function is a reference to
that list and not a copy of the list (call by reference instead of call by value). As a result, the parameter to
which the list is assigned becomes an alias for the list, and the function is able to modify the list itself (after
all, lists are mutable data structures).
>>> def modify(some_list, element):
... some_list.append(element)
... return some_list
...
>>> some_list = ['a', 'b']
>>> modified = modify(some_list, 'c')
>>> modified
['a', 'b', 'c']
>>> some_list
['a', 'b', 'c']

In the following example, we first make a copy of the list that is passed to the function. Then we modify the
copy, but not the original list. Making a copy of a list can be done for example by using slicing (some_list[:])
or by using the built-in function list (list(some_list)).
>>> def modify(some_list, element):
... copy = some_list[:]
... copy.append(element)
... return copy
...
>>> some_list = ['a', 'b']
>>> modified = modify(some_list, 'c')
>>> modified
['a', 'b', 'c']
>>> some_list
['a', 'b']

The Python Tutor gives a graphical representation of the difference between the above examples:

• example without copying

2

https://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_reference
https://en.wikipedia.org/wiki/Evaluation_strategy#Call_by_value
http://pythia.ugent.be/tips/redirecter.php?id=0


• example with copying

Because we no longer need the reference to the original list that was passed to the function, we may also
rewrite the function modify from the above example in the following way.
def modify(some_list, element):

some_list = some_list[:]
some_list.append(element)
return some_list

In this, the reference of the variable some_list to the original list that is passed to the function modify, is
replaced by a reference to a copy of the list. This replacement is only visible inside the function, because the
variable some_list is a local variable of the function modify. You can also inspect this example using the
Python Tutor.

Sorting lists

Python supports two ways to rearrange the elements of a list from the smallest to the largest. You can either
call the list method sort on the list, or you can pass the list to the built-in function sorted. However, there
is an important different between these two alternatives. The list method sort modifies the list in place (and
does not return a new list but returns the value None), whereas the built-in function sorted returns a new
list whose elements are sorted from the smallest to the largest.
>>> some_list = [4, 2, 3, 1]
>>> some_list.sort()
>>> some_list
[1, 2, 3, 4]
>>>
>>> some_list = [4, 2, 3, 1]
>>> sorted(some_list)
[1, 2, 3, 4]

Grouping the elements of a list

Python offers multiple solutions for grouping the elements in a list into groups of n elements. For example,
you may use a list comprehension to solve this problem.
>>> some_list = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
>>> [(some_list[i], some_list[i + 1]) for i in range(0, len(some_list), 2)]
[('a', 'b'), ('c', 'd'), ('e', 'f'), ('g', 'h')]

You may also use the built-in function zip that returns an iterator that simultaneously iterates two or more
iterables. Each iteration step, the iterator yields a tuple containing the i-th elements of the iterables that are
passed to the zip function.

If you simultaneously iterate over the list containing all elements at even positions (some_list[::2]) and
the list containing all elements at odd positions (some_list[1::2]), you obtain exactly the same result.
>>> some_list = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h']
>>> list(zip(some_list[::2], some_list[1::2]))
[('a', 'b'), ('c', 'd'), ('e', 'f'), ('g', 'h')]

All and any

The built-in functions any and all can be used to convert a list of Boolean values into a single Boolean value.
The function any returns True if and only if the list contains the value True at least once. The function all
returns True if and only if all values in the list are True.

3

http://pythia.ugent.be/tips/redirecter.php?id=1
http://pythia.ugent.be/tips/redirecter.php?id=2


>>> a = ['True', 'True']
>>> b = ['True', 'False']
>>> c = ['False', 'False']
>>> d = ['True', 'True', 'True', 'False']
>>> e = ['False', 'True', 'False', 'False']

>>> all(a)
True
>>> all(b)
False
>>> all(d)
False

>>> any(b)
True
>>> any(c)
False
>>> any(e)
True

Check if certain conditions hold

Sometimes you need to check explicitly if certain conditions hold when executing part of your program, and
the program needs to respond if one of the conditions is not met. One of the easiest ways this can be done is
by using an assert statement.
>>> x = 2
>>> y = 2
>>> assert x == y, 'the values are different'
>>> x = 1
>>> assert x == y, 'the values are different'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
AssertionError : the values are different

The general syntax of an assert statement is

assert <condition>, <message>

The assert statement checks whether the condition holds. If this is not the case, an AssertionError is
raised with the message (str) that is given at the end of the assert statement. In case this exception is not
caught elsewhere in the code (which will always be the case in this course), the execution of the codes halts
at the point where the AssertionError was raised (runtime error).

The list method insert

The list method append can be used to add an element to the end of a list. The list method insert allows
to add an element at a given position in a list. In case the position that is passed to the list method insert
is greater than or equal to the length of the list, the element is appended at the end of the list.
>>> some_list = []
>>> some_list.insert(0, 'a')
>>> some_list
['a']
>>> some_list.insert(0, 'b')
>>> some_list

4



['b', 'a']
>>> some_list.insert(1, 'c')
>>> some_list
['b', 'c', 'a']
>>> some_list.insert(10, 'd')
>>> some_list
['b', 'c', 'a', 'd']

ISBN
The string method join

The string method join can be used to concatenate all strings in an iterable (e.g. a list) into a single string.
This is done by concatenating all strings in the iterable using a separator, which is the string on which the
string method join is called.
>>> some_list = ['a', 'b', 'c']
>>> ' '.join(some_list)
'a b c'
>>> ''.join(some_list)
'abc'
>>> '---'.join(some_list)
'a---b---c'
>>> ' - '.join(some_list)
'a - b - c'

Compilations
Traverse the elements of two or more iterables simultaneously

If you want to traverse the elements of two or more iterables (objects of compound data types that have an
associated iterator; collections) simultaneously, you do this using the built-in function zip. This function
returns an iterator that initially returns a tuple containing the first elements of all iterables passed to the
function zip, then a tuple containing all second elements of those iterables, and so on.

Say, for example, that you want to add two lists element-wise, thereby creating a new list whose i-th element
is the sum of the i-th elements of the two original lists. This can be done in the following way.
>>> first = [1, 2, 3]
>>> second = [4, 5, 6]
>>> added = []
>>> for term1, term2 in zip(first, second):
... added.append(term1 + term2)
...
>>> added
[5, 7, 9]

This can also be written a bit shorter by making use of a list comprehension.
>>> first = [1, 2, 3]
>>> second = [4, 5, 6]
>>> added = [term1 + term2 for term1, term2 in zip(first, second)]
>>> added
[5, 7, 9]

5



The iterator stops (raises a StopIteration exception) as soon as one of the iterables is exhausted (raises a
StopIteration exception). If you want to traverse two or more iterables simultaneously until the last of
those objects is exhausted, you may do this using the function zip_longest from the itertools module.

6


	General
	Iterate the positions and the elements of a collection
	Working with floating point numbers in doctests
	Passing mutable objects to functions
	Sorting lists
	Grouping the elements of a list
	All and any
	Check if certain conditions hold
	The list method insert


	ISBN
	The string method join

	Compilations
	Traverse the elements of two or more iterables simultaneously


