General

Custom comparison operators

To explain how Python must compare two objects of a self-defined data type (class), a specific implementation
for the comparison operators must be provided. This can be done by overloading the following magical
methods:

method operator

1t

le

__gt__

__ge__

__eq__
ne_

IV VIAA

Please note that in most cases you'll have the opportunity to define most of these comparison operators based
on the other comparison operators. For example, two object are different if they are not equal.

The format specifier !r

Python has two built-in functions that can be used to convert an object into a string: str() and repr(). By
default, Python uses the built-in function str() to convert an object to a string in an f-string and when
using the string method str.format(). If you want to use the built-in function repr () instead, you can
either explicitly call the function or use the format specifier !r.

>>> course = 'programmming'

>>> str(course) # explicit call to str()
'programmming '

>>> repr(course) # explicit call to repr()
"'programmming'"

>>> course # implicit call to repr()
'programmming '

>>> print(course) # implicit call to str()
programmming

>>> f'The name of the course is {course}.' # implicit call to str()
'The name of the course s programmming. '

>>> f'The name of the course is {repr(course)}.' # ezplicit call to repr()
"The name of the course %s 'programmming'."

>>> f'The name of the course is {course!r}.' # implicit call to repr()

"The name of the course is 'programmming'."

Operator overloading with custom types

If Python needs to evaluate the following expression

ol + 02

it converts the expression into

type(ol).__add__(ol, 02)

This way, you can specify how the +-operator is evaluated if the object o1 belongs to a custom type (defined
using the class keyword). This is called operator overloading. However, operator overloading is not restricted
to the +-operator. In fact, Python converts each built-in operator (like mathematical operators and comparison
operators) into calling a method on the left operand o1, whose name has been fixed by the Python developers

(all names begin and end with a double underscore). Here’s an overview of some of these magic methods that
correspond to operators:

operator method

+ __add__

- __sub__

* __mul__

/ __truediv__
// __floordiv__
k ok __pow__

Operator overloading initially converts the evaluation of an operator into calling a magic method on the left
operand ol. But what if the class of the left operand ol does not define the magic method for objects of
type(02)? In that case an exception is raised, and Python makes a second attempt to call another magic
method (whose name has an extra letter r in front) on the right operand o02.

For example, if the addition we observed above fails when calling the __add__ method on the left operand
ol, Python attempts to call the following method on the right operand o2

type(02).__radd__(o02, ol)

Note that the name of the method has become __radd__ instead of __add__, and that the order of the
arguments has been inverted. This is important for asymmetric operations.

Returning a reference to the current object

Some methods need to return a reference to the object on which they were called. This object is automatically
passed as the first argument to the method, and so it is assigned to the parameter self if the Python naming
convention for the first parameter of a method was followed.

Say we want to implement the Tic-Tac-Toe game:

class TicTacToe:

def __init__(self):
self.grid = [
[None, None, None 1],
[None, None, None],
[None, None, None]
]
self.player = 'O'

def play(self, i, j):
self.grid[i] [j] = self.player
self.player = '0' if self.player == 'X' else 'X'
return self

This allows us to play the game in the following

>>> game = TicTacToe() .play(l, 1).play(0, 0).play(0, 1).play(l, 0)
>>> game.grid
L

['X", '0", Nomel,

['X", '0', Nomel,

[None, None, Nonel

where we can chain multiple calls of the method TicTacToe.play() because each method call returns a
reference to the object on which it was called: return self.

Using self

If you work with classes, you need to make a distinction between two kinds of variables. There are object
properties that can be referenced in all methods of the class and there are local variables of methods that
are only accessible in the method where they are defined. Only the names of the object properties need to be
prefixed with self. Variables that are local to a method (local variables) do not need to be prefixed with
self, and its considered very bad programming style if you do so.

Initialize object properties in initialization method

Before you start with the implementation of a class, you must first determine which properties the objects of
the class will have. These variables describe the internal state of the individual objects and can be addressed
in all methods of the class. Object properties can be referenced by putting the prefix self. in front of their
name. It’s always a good idea to define object properties in the __init__ method, where you assign them an
initial value.

	General
	Custom comparison operators
	The format specifier !r
	Operator overloading with custom types
	Returning a reference to the current object
	Using self
	Initialize object properties in initialization method

